‘壹’ 如何加强小学数学的概念教学
在小学数学课中,根据教学内容可以划分为概念课、计算课、解决问题课与空间图形课,而几乎在每一个新知识的起始课,学生最先接触到的必然是数学概念。
数学概念是数学知识的“细胞”,是进行逻辑思维的第一要素。一切数学规则的研究、表达与应用都离不开数学概念。概念是构成小学数学基础知识的重要内容,它们是互相联系着的,也是学习其他数学知识的基础,因此上好概念课对小学生的后续学习以及数学素质发展的培养都具有很重要的意义。
一、概念引入的教学策略
儿童学习数学概念有一个学习准备的过程,这个过程就称为“概念的引入”。良好有效的概念引入有助于学生积极主动地去理解和掌握概念。
概念引入的基本策略有:
1、生活实例引入
数学源于生活。结合生活实例引入概念是数学概念教学的一个有效途径。它可以使数学由“陌生”变为“熟悉”,由”严肃”变为“亲切”,从而使学生愿意接近数学。例如:“直线和线段”的教学。可呈现四组镜头让学生观察。镜头一:妈妈织毛衣的场景,突出散乱在地上的绕来绕去的毛线。镜头二:斜拉桥上一根根斜拉的钢索。镜头三:一个女孩打电话,用手指绕着弯弯曲曲的电话线。镜头四:建筑工地上用绳子拴住重物往上拉的画面,突出笔直的钢丝绳。然后提问:“刚才你在屏幕上看到了什么?你能给这些线分分类吗?你有什么办法使这些线变直?”这些熟悉的生活现象不仅唤起了学生对生活的回忆,更激起了学生探索欲望,为学生提供了“做数学”的机会。
2、从直观操作引入
组织学生动手操作,可使学生借助动作思维,获得鲜明的感知。如:教学“平均分”的概念,可先引导学生动手操作,把8个桃子分给2只猴子,看看有几种不同的分法。然后进行比较,说说你认为哪种分法最公平。从而使学生认识到:众多的分法中有一种分法是与众不同的,那就是每人分的同样多,从而形成“平均分”的表象。
3、从旧知迁移引入
数学概念之间的联系十分紧密,到了中高年级,许多概念可以通过联系相关的旧概念直接引入。例如:“质数与和数”的教学。由于质数、和数是通过约数的个数来划分的,所以在教学时,可以从复习约数的概念入手,然学生找出1、2、6、7、8、11、12、15的所有约数。在引导学生观察比较,他们各有几个约数?你能给出一个分类标准,把这些数分分类吗?从而为引出质数、和数做好铺垫。又如:“乘法”的概念可从“加法”来引入,“整除”的概念可从除法中的“除尽”来引入。
4、从情景设疑引入
丰富的情景不仅能激发学生的学习欲望,而且有利于学生主动观察和积极思考,还有利于培养学生通过观察发现并提出问题的能力。例如:关于“体积”概念的教学,可以先将两个同样的玻璃容器盛满水,然后拿出两个大小明显不等的石块,分别放进两个玻璃容器中,让学生观察,出现了什么现象,并想一想,为什么石块放进容器后,水要往外溢?为什么放进较大石块的容器,流出的水较多?从而让学生获得石块占有空间的感性认识,为引出“体积”做好了准备。
5、从动手计算引入
有些数学概念很难让学生观察或操作,但可以组织学生进行计算,使学生获得感性认识。例如:“循环小数”概念的教学。可先让学生进行小数除法计算,10/3,58.6/11。在计算过程中,学生会发现他们都除不尽,并且注意到当余数不断重复出现时,商也不断跟着重复出现,从而感知循环小数。
引进数学概念的方法较多,有时需要配合使用几种方法才能收到良好的教学效果。
二、概念建立的教学策略
概念建立是概念教学的中心环节。小学生建立数学概念有两种基本形式:一是概念的形成,二是概念的同化。由于小学生的思维特点处于由形象思维像抽象逻辑思维过度的阶段,因此,小学生学习数学概念大多以“概念形成”的形式为主。数学概念的形成,一般要经过直观感知---建立表象---解释本质属性三个过程。
1、强化感知
感知是人们认识事物的开始,没有感知就不可能认识事物的本质和规律。因此在概念教学中,首先根据教学内容有目的、有计划地向学生提供丰富的感性材料,引导学生观察,并结合学生自己的动手操作,丰富感性认识,为概念形成做好准备。在组织学生进行感知活动时,要有意识地把感知的对象从背景中凸现出来,以便学生清晰地感知。同时,变静止的为活动的,给学生留下清晰而深刻的印象。
2、重视表象
表象是人脑对客观事物感知后留下的形象,是多层次感知的结果。表象接近感知,具有一定的具体性,同时又接近于概念,具有一定的抽象性,它起着从感知到概念的桥梁作用。建立表象,可以使学生逐步摆脱对直观材料的依赖,克服感知中的局限性,为揭示概念的本质属性奠定基础。因此,在演示或操作结束后,不要急于进行概括,可以让学生脱离直观事例,默默地回想一下,唤起头脑中的表象,并通过教师的引导,是表象有模糊到清晰,由分散到集中,进而过渡到抽象概括。如:在直观感知黑板面、课桌面、课本面是长方形的基础上,抽象出几何图形。
3、揭示本质属性
在学生充分感知并形成表象后,教师要不失时机地引导学生进行分析、比较、综合,概括出事物的本质属性,并把这些本质属性推广到同类事物的全体,从而形成概念。
如:“三角形的认识”教学。首先让学生说出日常生活中常见的三角形实物;接着在屏幕上出示三角旗、红领巾、三角板等实物图,提问这些物体都是什么形状?然后教师去掉图中的颜色,只留下三个物体的外框,让学生说说这三个图形的相同点和不同点。舍弃这三种物体的颜色、大小、材料等非本质的东西,抽象出三角形的本着特征:都是有三条线段组成的。接着教师出示三条线段,在屏幕上慢慢“围成”一个三角形,形象地突出了“围成”这一特征,是学生准确理解:“由三条线段围成的图形叫三角形”。
4、深入理解概念的内涵和外延
当用定义把概念的本质属性揭示出来时,学生对概念的理解还是肤浅的。因此,教师要采取一切手段帮助学生逐步理解概念的内涵和外延,以便学生在理解的基础上掌握概念。一般可采取以下方法。
(1)析概念的关键性词语。如在概括出分数的概念后,可进一步剖析:①单位“1”表示什么意思?②“1”为什么加引号?③“平均分”表示什么意思?④“表示这样的一份或几份”是什么意思?只有把这些观念词语的意思弄清楚了,才能对分数的概念有深刻的理解。
(2)利用概念的肯定例证和否定例证。肯定例证有利于概念的概括,否定例证有利于概念的辨别。因此教师不仅要充分运用肯定例证帮助学生正面理解概念的内涵,同时还及时运用否定例证促进学生对概念的辨析。如:学习了“循环小数”的概念后,可举若干肯定例证和否定例证。
(3)运用变式突出概念的内涵与外延。“变式”是指本质属性不变而非本质属性发生变化。例如教学“三角形的高”时,当学生在标准图形做出高之后,可出示变式图形,然学生根据概念做出高。这样即使“三角形的高”的内涵到强化,又使外延到充分揭示。如果只提供标准图形,学生只会在标准图形上做高,而不会再变式图形上做高,这样就会缩小“三角形的高”这一概念的外延。
三、概念巩固的教学策略
学生对概念的掌握不是一次就能完成的,要由具体到抽象,再由抽象到具体多次往复。当学生初步建立概念后还需要运用多种方法,促进概念在学生认知结构中的保持,并通过不断运用加深对概念的理解和记忆,使新建立的概念得以巩固。
1、促进记忆
为了巩固所获得的新概念,首先需要记忆。教学中,我们必须遵循记忆的规律,指导学生对概念进行记忆。记忆有机械记忆、理解记忆。概念的机械记忆就是按概念在课本上的表述进行记忆。小学生机械记忆的能力一般比较强,但这种记忆如不及时上升到理解记忆,就很容易被遗忘,即使记住了也很难运用。概念的理解记忆是在明确了概念的内涵和外延,并使新概念和学生原有的知识经验建立联系后进行的记忆。
2、自举实例
自举实例就是让学生把已获得的概念简单地运用于实际,通过实例来说明概念,来加深对概念的理解。有经验的教师根据小学生通常带有具体性的特点,在学生通过分析、综合、抽象概括出概念以后,总是让他们自举例证,并把概念具体化。如在学生学习乘法的初步认识后,然学生找找生活中哪些问题可以用乘法解决。
3、强化应用
学生是否牢固地掌握了某个概念,不仅在于能否说出概念的名称和定义,还在于能否正确地应用。通过应用可以家生理解,增强记忆,提高数学的应用意识。
概念的应用可以从概念的内涵和外延两方面进行。概念的内涵的应用有:①复述定义或根据定义填空;②根据定义判断是非;③根据定义推理;④根据定义计算。概念外延的应用有:①举例;②辨认肯定例证或否定例证,并说明理由;③按指定条件从概念的外延种选择事例;④将概念按不同的标准分类。
4、注意辨析
随着学习的深入,学生掌握的概念不断增多,有些概念的文字表述相同,有些概念的内涵相近,学生容易混淆,如质数与互质数、整除与除尽、和数与偶数等。因此在概念的巩固阶段,要注意引导学生运用对比的方法,弄清易混淆概念的联系与区别,以促使概念的精确分化。
总之,小学数学概念教学是小学数学教学的重要组成部分,教师在上概念课的时候一定要根据针对学生的认知规律以及概念的具体特点,采取科学的教学策略来开展教学工作,以保证数学概念教学的质量。在小学数学教学中,帮助学生逐步形成正确的数学概念,是课堂教学的一个重要任务。
‘贰’ 小学二年级数学概念教学的课有哪些
对于数字的认识,对于大小的认识,对于加减乘除的认识等等,都是属于小学二年级数学概念课。有一些内容,并且这些概念课的话,主要就是让学生去了解这些是什么东西,并不会让学生去实际的进行写题或者其他的一些考试。
所以像这种概念课的内容的话,接受度一般都会比较高,因为仅仅只是让学生了解一下这些概念,然后了解一下背景和基础,为未来的学习去打下一个扎实的基础,所以在这种概念课的学习里面,同样是需要认真的,因为你不能够认真学的话,就不会学到相关的一些基础知识。
所以以上就是小学二年级数学概念课教学的课程内容。
‘叁’ 小学数学概念教学策略
概念教学是小学数学教学中最基础也是最重要的内容,概念教学能提高学生的推理分析、概括与归纳等思维能力。下面我来为大家介绍一下有关小学数学课堂概念教学的策略
小学数学概念课堂
一、小学数学概念教学存在的问题
新课改以来,概念课的教学取得了长足的进步,老师们大多能通过对大量事物、生活现象的感知、分析,操作、实验,进而归纳并抽象出概念。但毋庸置疑,数学概念教学还是比较忽视概念的形成过程,忽视概念间的相互联系,忽视概念的灵活应用,具体存在以下问题:
首先,教师心中没有一个宏观的“概念”,即不能将整个小学数学概念体系串联起来。往往习惯于把各个概念分开讲述,孤立地进行概念教学。尽管这也是课时设置的需要,教学进度的需要,但如果不能引导学生将概念串联起来,学生掌握的各种数学概念就显得零零碎碎,这不仅给概念的记忆增加了难度,更加重了学生理解和应用概念的困难。
第二,概念教学脱离现实情境。学生往往把概念强记下来,然后通过大量的强化练习来巩固概念。这种死记硬背的学习方式有着很大的消极影响,由于学生并没有理解概念的真正涵义,一旦遇到实际应用时就感到一片茫然。
第三,数学概念的形成没有建立在学生已有的认知基础上。数学概念的形成,是一个不断建构与加深的过程。引导学生准确地理解概念,明确概念的内涵与外延,正确表述概念,这是概念教学应该达到的目标。而部分教师课堂教学中对概念的抽象、归纳过于仓促,学生尚未建立初步的感知,教师即已迫不及待地做出归纳总结。
二、小学数学概念课的基本环节
概念课的教学基本环节大致分为:概念的初步感知——概念的理解——概念的类比——概念系统的建构。
(一)概念的初步感知
数学概念是抽象的、严谨的、系统的,而小学生的心理特点则是容易理解和接受具体的、直观的感性知识。因此,我们在教学之始应该在数学与生活之间搭建起联系的桥梁,提供丰富、典型、有趣的材料,充实学生的感性认识。概念引入的途径是多样的,可以通过直观引入、计算引入,也可以从情境设疑引入、学生的生活实际引入、知识基础引入、新旧联系引入。
(二)概念的理解
小学生建立数学概念有两种基本形式:一是概念的形成,二是概念的同化。由于小学生的思维特点处于由形象思维逐步向抽象逻辑思维过渡的阶段,因此,小学生学习数学概念大多以“概念形成”的形式为主。概念的形成是一个累积、渐进的过程,是概念教学的中心环节。数学概念的形成一般要经过直观感知→建立表象→揭示本质属性三个阶段,直观感知和建立表象是建立概念的向导,概念本质属性的揭示是概念教学的关键。
(三)概念的类比
小学生对概念的掌握往往不是一次能完成的,要由具体到抽象,再由抽象到一般多次循环往复。当学生初步建立概念后还需运用多种方法,促进概念在学生认知结构中的保持,并通过不断运用,加深对概念的理解和记忆,使新建立的概念得以巩固。为了让学生巩固所学的概念,可以举出实例进行类比、辨析。
(四)概念系统的建构
概念总是一个一个进行教学的,因此在小学生的头脑中,概念常常是孤立的、互不联系的,教学进行到一定程度时,要引导学生把学过的概念放在一起,寻找概念之间纵向或横向的联系,组成概念系统,使教材中的数学知识转化成为学生头脑中的认识结构,以利于对知识的检索、提取和应用,促进知识的迁移,发展学生的数学能力。
三、小学数学概念课教学的策略初探
(一)在具象与抽象的碰撞中建构概念
在数学与生活之间搭建起联系的桥梁,给学生提供丰富、典型而有趣的感知材料。将数学概念教学置于现实背景中,让学生通过活动经历、体验数学与现实的联系,用探究学习等方法引领学生获得数学概念,这样建立起来的概念才具有丰富的内涵。采用的方式有:1.让学生结合动手操作与语言表达,说出每一个概念的意义;2.让学生试着找概念的外在表现、不同形式(外延);3.数形结合,或是借助转换等进行相关的练习。
(二) 在类比与变式中深化概念本质
概念教学一般应遵循“从生活中来——抽象成数学模型——到生活中去”这样一个过程,强调从学生已有的生活经验出发,初步学会应用数学的思维方式去观察、分析,亲身经历将实际问题抽象成数学模型并进行解释与应用,在一个单元或是一组概念学完后,进行综合应用。
例如,在教学有关圆的周长和面积概念之后,让学生先做一道基本题,分析学生出现的问题,一起解决。再让学生在原题的基础上变一变,做一点变式练习。这样的变式练习,给了学生一个转换角度思考问题的空间,通过“外延”,加深理解概念的内涵。
(三)在思维导图中构建概念体系
建构主义教学观认为,概念的建构需经多次反复,经历“建构—解构—重构”的过程。在理解和练习的基础上,我让学生将相关的概念内涵与外延制作成思维导图,也就是将知识形成网络图,达到触类旁通的目的。
例如,有关圆的周长的概念,我让学生动手画一画、围一围、量一量,再试着让学生用自己的语言来说一说“圆的周长”。比如有学生借助一个圆形物体,边摸边说。同时,我鼓励学生用不同的方法来表达自己的理解。也有学生说,任何一个圆的周长都是它的直径的三倍多一些。还有学生说一个圆的半径的二倍再乘圆周率就是它的周长了。有直接描述内涵的,也有借助外延来刻画的。课堂上的时间有限,于是,让学生回家讲给家人听,或是录制成小视频,发到班级的微信群里,分享给同学们听。相关练习后,再将前后的知识点形成一个网状。引导学生画出思维导图。
( 四 )在梳理与归纳中构建数学概念体系
教师想要给学生一棵“知识树”,自己得拥有“一片森林”。教师要明白每一个数学概念在整个数学概念体系中的位置与重要性,如此,在引导学生归纳与构建数学知识体系时就能做到得心应手。
在给学生“一棵树”之前,还得让学生看到进入森林的道路,不至于让学生进去后,只见树木不见森林,或是被教师牵着走。为了给孩子们主动去探索这片森林的路,可以结合当前的教学引导学生做一些相关的小研究,并让学生用数学周记表达自己的作品。
小学数学常用顺口溜
一、20以内进位加法
看大数,分小数,凑整十,加零头。
(掌握“凑十法”,提倡“递推法”。)
二、20以内退位减法
20以内退位减,口算方法和简单。
十位退一,个加补,又准又快写得数。
三、加法意义,竖式计算
两数合并用加法,加的结果叫做和。
数位对其从右起,逢十进一别忘记。
四、减法的意义竖式计算
从大去小用减法,减的结果叫做差。
数位对齐从右起,不够减时前位拿。
五、两位数乘法
两位数乘法并不难,计算过程有三点:
乘数个位要先算,再用十位乘一遍,
乘积末位是关键,要和十位来对端;
两次乘积相加完,层层计算记心间
六、两位数除法
除数两位看两位,两位不够除三位。
除到那位商那位,余数要比除数小,
然后再除下一位,试商方法要灵活,
掌握“四舍五入”法,还有“同商比较法”,
了解“折半定商法”,不足除数商九、八。(包括:同头、高位少1)
七、混合运算
拿到式题认真看,先算乘除后加碱。
遇到括号要先算,运用规律要改变。
一些数据要记牢,技能技巧掌握好。
八、加、减法速算
加减法速算你莫愁,拿到算式看清楚,
接近整百凑整数,如下处理无谬误。
加法不足减补数,超余零头加在后。
减法不足加补数,超余零头减在后。
九、多位数读法
读书方法很容易,首先四位一分级。
要从最高位读起,几千几百几十几。
级的单位读亿万,末尾有零都不读
(级末尾0不读,整个数末尾0不读)
中间夹零读一个,汉字表达没参和。
注读零的:
1、万级个级首位有零
2、整个万级是零
3、上级末尾下级首位都有0
4、每级中间有0
十、小数加减法
小数加减计算题,以点对准好对齐。
算法如同算整数,算毕把点往下移。
十一、小数乘法
小数乘小数,法则同整数。
定积小数位,因数共同凑。
十二、除数是小数的除法
除数的小数点一划,(去掉小数点)
被除数的小数点搬家,向右搬家搬几位,
除数的小数位数决定它。
十三、质数歌
一位质数2、3、5和7,
两位1、3、7、9前加1,
4后3,7前有9,7后1,
3、4、6后加7、1,
2、5、7、8后添9、3,
二十五个质数要记全。
十四、分数乘除法
分数乘法易学懂,分子分母分别乘。算式意义要搞清,上下能约更轻松。分数除法方法妙,原来除号变乘号。除数子母打颠倒,进行计算离不了。
十五、约分
约分、约分,相乘约净,省时省力。从上往下,从左到右,弄清数据,一数不漏。遇到小数,去点为整,位数不够,用“零”来补。
十六、互质数的判断
分数比化简,互质数两端。观察记五点:1和所有数;相邻两个数;两质必互质。大数是质数,两数定互质。小数是质数,大数不倍数。(是小数的)
十七、文字题
叙述形式有三种,读法意义和名称。解题方法要记清,缩句化简一步算。标点词语把句断,分层布列莫迟延。列式方法有两种,可用算式和方程。
十八、比较关系应用题
(一)相差关系
1、多多少,少多少,都是大减小。
2、已知条件说比多,比前用加比后减。
3、已知条件说比少,比前用减比后加。
(二)倍数关系
1、倍在问题里用除。
2、倍在已知条件里,求是前用乘,求是后用除。
(三)求比几倍多(少)几的数
根据倍数分乘数,根据多少分加减。
算除先加减,算乘后加减。
十九、找单位“1”
单位“1“藏得巧,根据分率把你找。
“其中“的前站得好,”是、占、比“后坐得妙;
“问答式“能找到,补充说明要搞好。
百分数常遇到,不带“率“字有礼貌。
找出一对好朋友,然后确定乘除号。
找单位“1“的说明:
抓住含有不带单位名称的分数的“关键句“、“关键词”,进行剖析,这样就解决了不少学生对于分数应用题苦于不知“从何下手”进行分析数量关系。因此,使学生学会迅速找“关键句”、“关键词语”进行剖析数量关系,不仅能有利于掌握解答分数应用题的一般规律,而且也能培养学生的能力,发展学生的智力。先“找”后“析”是六年级学生普遍的学习规律,切记引导学生认真有序地进行分析。
分数应用题1、找 2、明 3、定 4、对应的解题思路。
二十、正反比例应用题
正比例,分三段,不变数量在中间,
前后归一分开列,然后等号来连接。
反比例分三段,不变数量在前面,
“如果”分开归总列,再用等号来连接。
‘肆’ 小学数学概念的小学数学概念教学意义
首先,数学概念是数学基础知识的重要组成部分。
小学数学的基础知识包括:概念、定律、性质、法则、公式等,其中数学概念不仅是数学基础知识的重要组成部分,而且是学习其他数学知识的基础。学生掌握基础知识的过程,实际上就是掌握概念并运用概念进行判断、推理的过程。数学中的法则都是建立在一系列概念的基础上的。事实证明,如果学生有了正确、清晰、完整的数学概念,就有助于掌握基础知识,提高运算和解题技能。相反,如果一个学生概念不清,就无法掌握定律、法则和公式。例如,整数百以内的笔算加法法则为:“相同数位对齐,从个位加起,个位满十,就向十位进一。”要使学生理解掌握这个法则,必须事先使他们弄清“数位”、“个位”、“十位”、“个位满十”等的意义,如果对这些概念理解不清,就无法学习这一法则。又如,圆的面积公式S=πr2,要以“圆”、“半径”、“平方”、“圆周率”等概念为基础。总之小学数学中的一些概念对于今后的学习而言,都是一些基本的、基础的知识。小学数学是一门概念性很强的学科,也就是说,任何一部分内容的教学,都离不开概念教学。
其次,数学概念是发展思维、培养数学能力的基础。
概念是思维形式之一,也是判断和推理的起点,所以概念教学对培养学生的思维能力能起重要作用。没有正确的概念,就不可能有正确的判断和推理,更谈不上逻辑思维能力的培养。例如,“含有未知数的等式叫做方程”,这是一个判断。在这个判断中,学生必须对“未知数”、“等式”这几个概念十分清楚,才能形成这个判断,并以此来推断出下面的6道题目,哪些是方程。
(1)56+23=79(2)23-x=67(3)x÷5=4.5
(4)44×2=88(5)75÷x=4(6)9+x=123
在概念教学过程中,为了使学生顺利地获取有关概念,常常要提供丰富的感性材料让学生观察,在观察的基础上通过教师的启发引导,对感性材料进行比较、分析、综合,最后再抽象概括出概念的本质属性。通过一系列的判断、推理使概念得到巩固和运用。从而使学生的初步逻辑思维能力逐步得到提高。
‘伍’ 如何进行小学数学概念课教学
如何进行小学数学概念课教学?数学概念是反映数学对象的本质属性和特征的思维形式。小学数学中反映数和形本质属性的数字、图形、符号、名词术语和定义、法则等都是数学概念。 今天,朴新小编给大家带来数学教学方法。
发现概念 领悟概念
小学生的认知特征是从具体逐渐过渡到抽象。进行概念教学时,教师应尽可能将数学知识与学生在日常生活的、熟悉的、具体的材料相联系,这样就有利于抽象的数学概念具体化、形象化,便于学生的理解,同时也能激发学生的思维和探索新知的欲望。例如学习“百分数的意义”时,教师出示一组在日常生活中经常见的数据:有一商场的衣服降价10%;六(3)班同学的体育合格率达98%;今年城镇人口人均收入比去年增长12.5%……让学生初步感知什么样的数是百分数。学生根据上述的材料会提出一系列的问题:百分数的意义是什么?有什么作用?怎样读?怎样写?百分数与分数有什么不同……有了这样的开始,再来学习“百分数”的概念就显得轻松自然了。再如:开始学习“角”,教师凭借常见的直观实物(五角星、三角板等),帮助学生理解“角”的意义。
对于发展性概念,一般采用课前预习、课堂复习的方式,让学生在已有知识和智力能力的基础上,通过已有的概念去认识新的概念,使新概念在已有的概念中深化,产生新的知识,即在旧概念的基础上引入新概念。如,讲“比的化简”时为了讲清“最简单的整数比”这一概念,可以引导学生回忆运用分数的基本性质约分的道理,复习“最简分数”的概念,这样,学生很快理解了“最简单的整数比”就是“比的前项和后项是互质数的比”。再进一步指出化简比的方法与约分方法相同,但要注意如果比的前项和后项有小数或分数,必须转化成整数比再化简。这样,学生在学习中,就能找出新概念与已有的相关概念的联系与区别,实现知识的迁移,同时也巩固了旧知识。
‘陆’ 人教版小学中年段数学概念课内容有哪些
数与代数。
主要集中在“数与代数”领域里,如:分数,小数,整数等。小学数学中有很多概念,包括:数的概念、运算的概念、量与计量的概念、几何形体的概念、比和比例的概念、方程的概念,以及统计初步知识的有关概念等。
‘柒’ 概念教学的含义是什么
把握概念教学的本质含义—评“中位数”一课纵观整节课,何老师进行了很好的价值取向,可以概括地说只做了一件事,那就是在层层递进的过程中,逐步丰富和建构对概念中位数本质意义的理解,即将“促进学生理解”始终贯串在整个课堂中。一、 在情境中丰富概念认识本节课,在工资问题上展开讨论,帮助学生体会并揭示概念,在公司人员发生变化的基础上,进一步体会中位数的含义,在具体的情境中(选择跳绳成绩相近的人员及歌手平均分的计算),在中位数和平均数的运用中加深对概念的理解。本课选择了情景非常丰富, 既有与实际生活联系的情境,如工资问题,也有比较抽象的数学情境如“19、20、21、21、24”,如把24改成49,平均数有何变化,中位数有何变化等,实际与抽象交错结合,促进学生数学的思考。有一点值得注意:何老师将其创设的情境的价值发挥到了最大化。如,在创设甲公司和乙公司的工资问题后,在不断丰富和变化此情境的基础上,解决了概念的感受,揭示与深入理解,直到运用概念时,才换了新的情境。二、 在对比中深化概念的理解对比是理解概念的一种重要方式。本节课。多次运用对比。在创设主题情境中,对两个公司平均工资的比较,创设认知冲突,“平均工资高的员工工资不一定就高,从而让学生感受到”平均数骗了我们“,需要寻求新的量来表示。这样的设计与教材呈现的一个公司相比,学生的认知冲突更明显,产生寻求新量的需求更大。在进一步明晰概念时,对两个公司的“平均数、中位数”进行了横向和纵向德对比,更能让学生体会概念的含义以及概念间的区别于联系。在深入理解概念的过程中,创设了动态的对比,将“19、20、21、21、24”,中的24换成49。(平均数、中位数“发生了什么变化。在这种变化中的对比,促使学生深刻体会两种量自身的含义 以及相互联系与区别。全课一致贯串这中位数与平均数的对比,更能将新概念(中位数)的本质属性剥离的更清新,使学生理解更透彻。这些对比,均对学生理解概念起了很大的作用,找寻和设计这些对比的过程,应该说是一个极富创造性的过程。三、 在整体中把握概念的本质本次多次出现了“不该出现的平均数“甚至有一个环节是:深刻理解平均数”即将 “19、20、21、21、24”,中的24换成49。(平均数是变大了还是变小了,把其中的19换成4,平均数是变大了还是变小了。有的老师认为有点“喧宾夺主,重点不突出”之嫌。我想上学教学不是孤立的片段或者知识点应是连贯的。在连贯的题材当中,学生更容易把握知识的本质,这种联系也使得学生更好的理解概念,把握概念本质。本课的教学内容虽然是“中位数” ,但他们都是统计量的一种,硬挨放到统计量的系统中来检视,目光不能局限于中位数,在教学过程中,何老师利用学生的思维,适时与平均数对比,使之更能体现各自量的意义。以及量与量之间的联系与区别,对培养学生理性看待数据也有着潜移默化的作用。关于中位数,属于陈述性知识,可以直接告诉,但本节课没有采取这种方式,究竟是该直接告知,还是该留一定的探索空间,目前有很所争论,我想,何老师德课堂,给了我们很好的诠释这种“润物无声“的课堂”滋养,对学生未来的成长有着不可估量的价值。
‘捌’ 什么叫数学概念教学
数学概念是现实生活中某一数量关系和空间形式的本质属性在人的思维中的反映。按概念的抽象水平可以将概念分为描述性概念和定义性概念两类。描述性概念是可以直接通过观察获得的概念,如“长方形”等;定义性概念的本质性特征不能通过直接观察获得,必须通过下定义来揭示,如“偶数”就是通过定义“能被2整除的数叫做偶数”来揭示偶数的本质特征的。不管是哪一类概念,都是小学生掌握数学基本知识和基本技能的基石,都将直接影响以后继续学习及思维能力的发展。
小学数学教学的主要任务之一是使学生掌握一定的数学基础知识。而概念是数学基础知识中最基础的知识,对它的理解和掌握,关系到学生计算能力和逻辑思维能力的培养,关系到学生解决实际问题的能力和对学习数学的兴趣。要掌握正确、清晰、完整的数学概念,既依赖于他们的数学认知结构状况,又依赖于教师的教学措施。笔者认为:有效的概念教学应将概念的逻辑联系与学习者认知水平有机结合起来,制定或选择恰当、有效的教学策略。
一、描述性概念数学要直观形象。
一般来说,学生学习概念是从感知学习对象开始的,经过对所感知材料的观察、分析或通过语言文字的形象描述所唤起的回忆,在头脑中建立学习对象的正确表象,才引入概念。小学生对事物的认识是从具体到抽象,从感性到理性,从特殊到一般的逐步发展过程。小学生的思维还处于具体形象思维阶段。小学数学中的许多概念,都是从小学生比较熟悉的事物中抽象出来的。描述性概念的讲授方法必须从学生现有的生活经验出发,坚持直观形象的原则。如:在学习长方形之前,学生已初步的接触了直线、线段和角,给学习长方形打下了基础。教学长方形的认识时可以利用桌面、书面、黑板面等让学生观察,启发学生抽象出几何图形。从中总结出这些图形的共同特点:
(1)都有四条边;(2)对边相等;(3)四个角都是直角。这样使学生在头脑之中形成对边相等、四个角都是直角的四边形是长方形的概念。
二、定义性概念教学要准确推敲。
数学是一门严密而精确的科学,特别是有关概念具有更强的“压缩性”。字里行间包含着深刻的内涵,丰富的思想内容和数学思想方法,因此在定义性概念教学中,要指导学生咬文嚼字、准确推敲关键词语的涵义。例如在教学互质数时,教师在引导学生对几组数,如“4和7”、“10和9”、“25和18”的公约数的观察的基础上,引入互质数“公约数只有1的两个数叫做互质数”的概念。然后,老师要引导学生认真推敲,对互质数的这个概念要弄清:(1)它是两数之间的一种关系。(2)它是从公约数的个数这个角度提出来的。(3)关键词“只有”的含义。从这三个方面揭示出互质数的本质属性。教学中只有抓住这些属性,逐项剖析,才能使互质数的特征活脱脱地展现出来。教师通过对“互质数”的详细解读,既抽象概括出“互质数”这个概念,又能为学生深刻理解掌握互质数奠定了基础。
三、精心设计习题,清晰概念的内涵外延。
每一个概念都有一定的外延和内涵,概念的外延就是适合这个概念的一切对象的范围;而内涵就是这个概念所反映的对象本质属性的总和。概念教学中,在学生对概念理解的基础上,教师要精心地设计各种类型的题目,让学生通过分析、比较、综合、抽象、概括等逻辑思维方法,把握事物的本质和规律,从而加深对概念的理解。例如,在“因数与倍数”这一章的概念教学中,可以设计如下练习:
1、填空:
(1)、10以内的偶数有
(2)、20以内3的倍数的有 、
(3)、最小的质数是 最小的合数是 。
(4)、18的因数有 。
2、判断:
(1)、8和9是互质数。
(2)、整数可以分成质数和合数两部分。
(3)、6÷1.2=5是整除。
(4)、10和13是互质数,所以他们没有最大公约数。
3、选择:
(1)、4和6的最大公约数是( )。
A、4 B、6 C、2
(2)、把6分解质因数是( )。
A、6=1×2×3 B、2×3 C、6=2×3
通过不同的角度、变换叙述的语言、正反不同的例子、对有联系的概念进行对比等多种形式的训练,深化概念的本质属性,更能帮助学生清晰地掌握概念的内涵与外延。
四、利用知识迁移,构建知识网络。
这包括两方面的要求。第一方面,要加强数学中最基本的概念的教学。所谓最基本的概念,就是在知识与技能的网络中,那些带有关键性的、普遍性的和适用性强的概念。如,加法的概念、比多比少的意义、差的概念、乘法的意义、比的意义、倍的概念等等,越是最基本的概念,它所反映事物的联系就越广泛、越深刻。抓住这些最基本概念的教学,能使知识产生广泛迁移,使学生学习起来容易理解,同时也有利于记忆。第二方面,小学数学中许多概念之间存在着密切的联系,教学中要指导学生对一些相关联的概念进行对比,归类,揭示它们之间的内在联系,抓住这些联系就可以使知识脉络更清晰,知识结构更完整。掌握了这些联系,从特殊到一般,从一般见特殊,便可实现相关知识的有机统一。例如:长方形、正方形、梯形、平行四边形都是四边形,但是他们又相互区别。老师在教学完梯形之后,要对四种有联系又有区别的四边形进行分析比较,从而加深学生对四种四边形的理解。
五、加强训练,指导学以致用。
“使学生初步学会运用所学的数学知识解决一些简单的实际问题”,是新课程标准所赋予我们新时期小学数学老师的任务。在实际教学中往往遇到学生会很熟练地背出概念内容,但不能进行灵活应用的现象。为此,教学中除了要重视数学概念的形成和获得外,还要加强数学概念的应用训练,以增强学生的实践意识。数学来源于生活,就必然要回到生活中去。教师要积极创造条件,引导学生用数学概念去解决生活中的数学问题,让学生在训练中体验教学的价值,获得成功的喜悦。例如,我们在教学“众数”后,可以设计这样一个问题情境:有一家公司,经理的月工资是8000元,2个部门主管每人的月工资是5000元,10个工人每人的月工资是1500元,你要选择用平均数、中位数、还是众数来反映这个公司员工的月工资水平,并说明理由。学生将学过的三种统计量的知识,运用到生活中去解决实际问题,在“学数学”中“用数学”,体会数学的应用价值,增进对数学的理解和应用数学的信心,进而形成勇于探索、勇于创新的科学精神。
总之,要让小学生掌握正确、清晰、完整的数学概念,必须在概念的教法上研究、学法上探讨,从而提高概念教学的高效率,培养学生的学习兴趣,提高学生的数学素养。
‘玖’ 小学数学四种类型的课
小学数学四种类型的课
小学数学四种类型的课,在课堂上的时候,教学方法通过课程的区别是需要进行改变的,课堂教学的课型泛指课的类型或模型,是课堂教学最具有操作性的教学结构和程序,下面看看小学数学四种类型的课。
一、新授课:该课型以“解决问题”为核心,运用“问题+方法+应用=问题解决”的策略,培养学生解决问题的能力。
基本环节是:
1)创设导入,明确目标。
2)互动探究,归纳解法。
3)实践应用,解决问题。
4) 达标练习,评价总结。
二、练习课:该课型以巩固数学基础知识,形成解题技能、技巧和培养学生运用所学知识解决实际问题为主要任务。练习设计有层次性、综合性、拓展性,本着小步子、密台阶、高成效、快节奏的指导思想安排几组习题进行集中训练,让学生在学懂、学会的基础上融汇贯通。
基本环节是:
1)创设导入,明确目标。
2)基本练习,寻找缺漏。
3)综合训练,拓展提高。
4)达标练习,评价总结。
三、复习课:以学生为主梳理知识、归纳解法,以练习为主巩固知识、查漏补缺。复习课应让学生通过回忆、观察、比较,对知识进行归类整理,且针对性设计练习巩固知识。
基本环节是:
1)创设导入,明确目标。
2)自主梳理,互动概括。
3)综合应用,查漏补缺。
4)达标练习,评价总结。
四、试卷讲评课:此课型要充分发挥学生的主体作用,把课堂交给学生,让学生通过自我诊断、互相交流、自我反省、自我完善的过程调动学生思维的积极性和敏捷性,提高其分析问题和解决问题的能力。
基本环节是:
1)考情分析,表彰鼓励。
2)自我更正,合作解决。
3)互动研讨,教师释疑。
4)达标练习,评价总结。
以上课堂教学模式的研究应用要正确处理好以下四个关系:
1.从师生关系来看是“主导+主体”的关系;
2.从学习时空来看是“课内+课外”的关系;
3.从学习内容来看是“教材+导学案” 的关系;
4.从学习方法来看是“自主+合作”的关系。
一、新授课
数学与代数
概念课、计算课(口算、笔算、脱式计算)、解决问题课等
图形与几何
单位概念课、图形概念课、公式推导课、解决问题课等
统计与可能性
一般就是统计表和统计图的认识,如《认识条形统计图》,还有可能性相关知识
数学广角
类似培优课的专题课,如三年级数学上册《重叠问题》
综合与实践
如:三年级数学上册《数字编码》课
二、练习讲评课
课本习题课、数学练习册讲评课、试卷讲评课
三、复习课
单元复习课、期中复习课、期末复习课
小学数学基本课型可分为六种:新授课、练习课、复习课、讲评课、测验课、活动实践课。其中最重要的课型是新授课,每一类课型又可按学习内容不同分为若干种类型,如新授课可分为概念教学新授课、计算教学新授课、应用题教学新授课、几何形体教学新授课等。我们要把握各种课型的概念作用,如:
新授课是指以传授新的数学知识,形成新的数学能力为主的课型。这是一种最常见,最重要的课型。
练习课是新授课之后,教师有目的、有计划地指导学生运用已学过的知识进行一系列基本训练的教学活动。它以学生独立练习为主要内容,是新授课的补充和延续,它可以使学生新学的知识得到巩固,并逐步形成技能,发展智力。
复习课是指教师专门引导学生对新学的数学知识进行系统的归纳、总结、消化、理解、巩固、综合运用,沟通知识之间的横向和纵向联系,形成知识网络,以达到帮助学生巩固所学的知识,培养学生综合运用知识解决问题的能力为主要任务和目的的授课形式。
一 初读、归纳、整体感知文章内容
在第一遍阅读的过程中,让学生在每段前加上序号 ,在默读中把不理解的词语或不认识的生字做上标记,读完后利用工具书查找不认识字的字音和不理解的词义,在扫除字 、词障碍后。整体感知课文内容 ,使学生能够简洁地概括文章大意。一般来说,学生在概括过程中,会出现语言啰嗦、中心把握不准的现象,
教师就要向学生传授概括文章主要内容的'方法。例如在默读过程中勾画出每段中心句和每段中的关键词语等方法,然后再言简意赅地概括出文章的主要内容。记叙文一般来说 ,要明确文章具体写了 “ 什么人 ,通过什么事 ,表达了怎样的人物形象或事物怎样的特点”. 散文则是应该了解具体写了
“ 什么人或什么事物 ,表达作者怎样的感情”. 而议论文,应该把握文章 “ 阐明了怎样的观点 ,突出什么主旨”.这样既可以培养学生的语言表达能力, 也在潜移默化中培养了学生的语言概括能力。
二、细读、梳理脉络、深入理解文章内容
第二遍读文章需要细读 ,要通过细读梳理文路,深入理解文章内容。挖掘潜在的知识点和探求文章的本质,让学生在精读中自主选择阅读内容,自主选择阅读的重点,启发和提示学生把自己不理解的语句勾画出来,打上问号,等待质疑环节时提出。在教学中教师要鼓励学生大胆发问,敢于别出心裁,可指导学生从以下 6个方面质疑 :
①抓住题目质疑 .
② 围绕课后问题质疑 .
③ 围绕文章内容及中心思想质疑 .
④ 围绕单元训练质疑。
⑤抓住课文最矛盾的地方质疑。
⑥对课文意犹未尽的地方质疑。
“学贵有疑 ,小疑则小进大疑则大进”. 教学中,经常发现有的学生被一些问题逼得“山穷水尽”无路可走 ,老师设计的问题如果跳出老框框另辟蹊径,那么学生就会感到 “柳暗花明又一村 ”.以便达到深入理解课文内容的目的;对有独到见解的语句要做好批注。例如由文中语句 ,联想到了谁的作品或想到了什么名言、警句或诗歌,
以及个人较深的感悟或启迪等等。这时,可以发挥众人的智慧,通过组织学生交流,提出自己的看法,最好不要人云亦云 ,不仅每个学生的个性得以发展,而且每个学生的聪明才智凝聚为一个集合整体,优异距离缩小了,学生和老师的空间距离也缩小了,语言交流沟通增多了,思想情感加深了。因此,这样学生不仅对文章内容有了完整的认识 ,
从而提高了自主探究的学习能力。这样在无形中就对学生进行了知识的拓展和迁移训练。既巩固了旧知识 ,也拓展了学生的课外积累,也增强了语文阅读兴趣,还养成了良好阅读的习惯,并且深入理解了文章内容,可以说是一举多得。
‘拾’ 小学数学概念教学中涉及哪些概念
一、算术方面
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
数量关系计算公式方面
1、单价×数量=总价
2、单产量×数量=总产量
3、速度×时间=路程
4、工效×时间=工作总量
5、加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
有余数的除法: 被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米。 1亩=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化发。
16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、互质数: 公约数只有1的两个数,叫做互质数。
18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
21、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整除,即能用2进行约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。
如3. 141592654
33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
34、什么叫代数? 代数就是用字母代替数。
35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c
一般运算规则
1 每份数×份数=总数总数÷每份数=份数 总数÷份数=每份数
2 1倍数×倍数=几倍数几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3 速度×时间=路程路程÷速度=时间 路程÷时间=速度
4 单价×数量=总价总价÷单价=数量 总价÷数量=单价
5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6 加数+加数=和和-一个加数=另一个加数
7 被减数-减数=差被减数-差=减数 差+减数=被减数
8 因数×因数=积积÷一个因数=另一个因数
9 被除数÷除数=商被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 正方形 C周长 S面积 a边长
周长=边长×4 C=4a
面积=边长×边长 S=a×a
2 正方体 V:体积 a:棱长
表面积=棱长×棱长×6 S表=a×a×6