Ⅰ 数学知识在物理上的应用有哪些
数学知识在物理上的应用有哪些
重心 是规则图形数学是一门非常重要的基础学科,尤其在理解物理概念、物理规律以及解决物理问题时,数学知识起着重要的工具作用。有些初中学生数学学得比较好,但物理不一定学得好,因为这些学生往往用纯数学的思维方式理解物理概念、规律或求解物理问题,这样就造成了学生在应用数学知识解决物理问题时容易出现错误,解决上述问题的有效途径就是把物理问题转化为数学问题,有效的运用数学知识来解决物理问题。一、用数学式子表达物理概念、物理规律,用字母表达物理量、已知量、未知量。初中学生初学物理时往往对用符号表示物理量之间的关系式不习惯,不会应用这些物理量的符号去表示相应的数字信息,不清楚公式中的符号哪些是已知的,哪个是未知的,导致公式变形出错,乱套公式,物理结果出错。 解决途径:(1)首先引导学生学会“读题 → 标量 → 选公式”的方法。即学生边读题,边在相应的数字下面标上相应的物理量的符号,这样做的目的就是明确了已知量和未知量,再根据物理问题情境选择恰当的公式来求解。(2)解题时强调运用“三步法”,即“公式 → 带入数据 (数字+单位) → 结果(数字+单位)”。要让学生明确物理公式是解决物理问题的重要依据,所以要先写出公式,再带入相应的数字和单位,然后运用数学知识进行计算得结果。(3)物理量用规定的符号来表示,学生往往不能把字母和它表示的物理量联系在一起。如学生在数学中未知数都可以用X、Y表示,有时学生在解决物理问题时,不管是求哪个物理量,他们都用X、Y表示,这样不便于理解物理含义。在分析题时让他们在物理量的旁边写出表示这个物理量的符号,再看求哪个量就用他在这个物理量旁边标出的字母来表示。 通过不断强化及练习,学生学会了运用数学能力来求解物理问题,使学生对符号的认识由不熟悉到能够灵活运用。二、用方程表达物理关系、解决物理问题。学生往往在数学中会列方程解方程,但不会求解物理关系式。 解决途径: 教师应教会学生将物理关系式与数学方程概念有机的结合起来,让学生理解物理关系式实际上是将方程概念赋予了具体实际的内容。在建立物理情境的基础上,利用数学方法求解物理问题。 例如:用弹簧测力计提着体积为10cm3的铁块浸没水中,不触底,此时用弹簧测力计的示数多大? 引导学生分析:求弹簧测力计的示数多大,实际是求铁块在水中受到向上的拉力多大。(1)受力分析,画出受力示意图,如图:重力、浮力、拉力。(2)引导学生分析能求哪些量:如:F浮= ρ水 gV铁,G=ρ铁 gV铁(3)建立力的平衡式 F拉 + F浮=G (4)代入求解 F拉 =G + F浮 可以看出物理中力的平衡式实际上就是数学中的方程式,教师再引导学生利用数学方程思想来求解物理问题。通过例题分析、训练,学生逐步增强数理结合的意识,能将物理问题自觉地灵活地转化为受物理规律制约及显示物理规律、物理情境的数学问题。三、用分式的性质等量代换的思想进行单位换算。初学物理的学生在单位换算方面成为学习物理知识的障碍。 解决途径: 首先让学生理解物理中的单位换算,实际上是数学中的等量代换思想的体现,其次让学生理解记忆基本换算关系。例如:速度的单位换算,引导学生运用数学方法:(1)分子分母分别换算法 例如:20m/s = 20 = 72km/h(2)利用速度进率法:1 m/s = 3.6 km/h20m/s = 20 3.6 km/h = 72km/h 通过分析比较,让学生理解单位换算的方法和技巧,今后能灵活自如的进行单位换算,不要让单位换算成为学生学习物理的障碍。四、区分物理平均与数学平均。 学生对物理中的平均概念的理解往往停留在数学的平均思想上,不注意条件,不注意适用范围,导致结果出错。 解决途径: 教师要引导学生理解物理中的平均与数学中的平均概念的区别,要特别注意公式的适用条件和适用范围。 例如:求平均速度问题,原则上应该是,S代表总路程,t代表通过路程S所用的总时间。(1)一个物体做直线运动,前一半路程的速度为 1,后一半路程的速度为 2,求全程的平均速度。隐含的条件是 S1 = S2 = S 但是有一些学生不理解物理上平均速度的含义,直接利用数学上的平均思想解题得出的错误结论 。(2)一个物体做直线运动,前一半时间速度为 1,后一半时间速度为 2,求全程的平均速度。隐含的条件是 t1=t2 = t 又如:伏安法测电阻,多次测量利用数学的加权法求平均电阻值有实际意义。而电功率的平均值没有实际意义。 可见应用数学知识分析物理问题时要特别注意物理学科的特殊性,注意概念的物理含义和规律成立的条件,因此我们在物理教学中要强化物理意义、物理内涵,公式形成过程的指导以及物理规律成立的条件,以使学生在扎实的物理基础上恰当、灵活地应用数学知识解决物理问题。五、利用函数图像理解物理意义。 物理规律、物理量之间的关系可以用图像表达出来。但是有的学生不能将函数图像与物理知识联系起来,造成解决物理题的困难。 解决途径:首先让学生明确,横纵坐标表示什么物理量,再分析这个图像表示的物理意义。 例如:一个正比例函数图像,斜率表示密度ρ=m/v,即m与v成正比,也就是说同种物质,质量增大多少倍,体积也增大多少倍,比值不便,这个比值就是密度。这样有利于学生理解密度是物质的一种特性。 总之,运用数学知识解决物理问题的有效途径,就是把数学知识、数学思维方法迁移到学习物理上来。因此教师在教学中应强化数理知识的结合,利用多渠道的有效途径,促进数学知识的迁移,学生才能更好的利用数学知识来解决物理问题。的几何中心有些求力臂的可能会用到勾股定理还有就是一般性的计算了
Ⅱ 数学能否可以描述任何物理现象和规律
数学是建立在假设(公理体系)上的系统,所以理论上能用数学描述任何物理现象,只要这些物理现象符合数学的公理体系。
Ⅲ 为什么石头扔到水面会有一圈圈的波纹,试用数学知识解释。。。
物理现象:水波,是以石头进水点为波心向四周呈圆形传播,形成一圈圈波纹。
Ⅳ 高中 物理 怎样用数学方法证明磁聚焦现象
分解初速度,沿磁场方向的速度vcosθ,几乎相同,因为cosθ接近1,此方向做匀速直线运动。垂直磁场方向的速度vsinθ,此方向做匀速圆周运动,周期均相同,由2πm/qB决定。一周期后水平向前运动的距离几乎相同,垂直方向均回到出发点,形成聚焦现象。
Ⅳ 数学在物理中的运用
数学是研究物理学的有力工具,不论是物理实验的测量和计算,物理概念和规律的表达,还是习题求解等,都离不开数学的应用.但是,数学只是工具.作为工具用的数学必须与物理现象的内容统一,而且还受到具体的物理条件的制约,所以运用数学解决物理问题的能力培养必须充分考虑到物理学科的特点。
众所周知,物理学的发展离不开数学,数学是物理学发展的根基,并且很多物理问题的解决是数学方法和物理思想巧妙结合的产物。打好数学基础要从高中做起 ,培养学生的数学思想,创新能力,更好的与大学课程接轨,更早的把高中生带到物理殿堂。
下面以一题为例说明一下数学思想在物理中的应用:
【例一】如图所示,一根一段封闭的玻璃管,长L=96厘米内有一段h1=20厘米的水银柱,当温度为27摄氏度,开口端竖直向上时,被封闭气柱h2=60厘米,温度至少多少度,水银才能从管中全部溢出?
解:首先使温度升高为T0以至水银柱上升16厘米,水银与管口平齐,此过程是线性变化。温度继续升高,水银溢出,此过程不再是线性关系。设温度为T时,剩余水银柱长h,对任意位置的平衡态列方程:
(76+ h1)×60/300=(76+h) ×(96-h)/ T 整理得:
T=(-h2+20h+7296)/19.2
h的变化范围0——20,可以看出温度T是h的二次函数,此问题转化为在定义域内求T的取值范围,若Tmin<T<Tmax,只有当温度T大于等于Tmax 才能使水银柱全部溢出,经计算所求值Tmax =385.2 。
只有通过二次函数极值法,才能从根上把本体解决。加强数学思想的渗透是新教材新的一个体现,比如:“探索弹簧振子周期与那些因素有关”,“探索弹簧弹力与伸长的关系”。在实际教学过程中应该引起高度重视并加以扩展。
大学物理课程与高中物理课程跨度较大,难点在于运用数学手段探索性研究物理问题的方法,另外微积分思想比较难以理解,为了与大学物理课程更好的接轨,在高中阶段对学生进行微积分思想的渗透也是非常必要的。因此在高中物理教学过程中应抓住有利时机渗透微元思想,为学好微积分奠定良好的基础。渗透的内容应该有两方面:一是变化率,二是无限小变化量,比如:
在讲速度时,平均速度v=△s/t,即时速度呢?△s/t就是变化率,当△s取无限小时,v就可以理解为某一时刻的速度——即使速度。加速度a= △v/t, △v/t是速度变化率,当△v取无限小时,加速度a就可以理解为某一时刻的加速度。象这样的例子还有w/t,I/t, △φ/t等等。总之高中物理教师应当根据学生的具体情况适当的渗透微积分的思想并加以配套练习,达到巩固理解的目的。下面讨论一个相关题目。
【例二】一竖直放的等截面U形管内装有总长为L的水银柱, 当它左右两部分液面做上下自由振动时,证明水银柱的振动时间谐振动。
解:设两液面相平时速度为V0,建立坐标如图。
当有液面上升x时,液体速度为v,则根据能量守恒的
mv02/2=△mgx1 +mv12/2 ⑴
△m=mgx1/L ⑵
⑵带入⑴得
mv02/2=mgx12/L +mv12/2 ⑶
当液面在上升△x时,x2=x1+△x 则
mv02/2=mgx22/L +mv22/2 ⑷
⑷减⑶ 得
0=(x22-x12)mg/L+m(v22-v12)/2化简得:
0=(x1+x2) mg△x/L+m(v12-v22)/2 ⑸
△x很小,则认为加速度a不变,根据运动学公式得:
v12-v22=2ax带入⑸得
0=2x△xmg/L+2ma△x/2 ⑹
即:F=-2mgx/L 2mg/L为常数K,证得水银柱的振动为简谐振动。
Ⅵ 为什么数学可以用来表示科学的原理呢
数学是表达变量相互关系的一门学科,是很多科学的基础。
不光是物理,还有生物、化学、甚至经济等很多科学,都可以用数学建立模型,然后用模型来表达这些学科的原理。
学科里面,因素引起结果,那么因素用一个变量代替,变量之间通过研究、对比、归纳总结,得出一些数学关系。
只要所有变量都被找到,那么数学就能表达科学的原理了,如果还有变量不能全部找到,或者变量过于复杂,比如气象预报,那么要想用模型来解决就比较难,但是科学是在发展的,总有一天,会有更完整的方法来表达这个科学的原理,
Ⅶ 物理学家是如何根据大自然的物理现象列出方程的
物理现象本身是没有方程的
能转化为方程的一定是具体的物理数量。通常物理学家会探究2个有关的物理量间的函数关系,从而得到方程。
简单的一次函数关系,可以由测量结果,用数学上线性回归的方法求出
复杂的函数关系,也会想办法用接近的函数拟合(当然也有一些也许极难得到他们的精确方程,譬如普通气体的状态方程)
Ⅷ 数学公式和物理公式是怎样推导出来的
数学公式,物理公式的推导,就包括所有式子的这个公式的推导,学科里面这些公式到底是什么,就是它代表着某些量。一个公式里面的字母代表着一个量,你找到那个量代入这个式子里面,就能求得这个式子里面其他的那些未知的量。
可能说某些物理中的式子公式,你没有在现实生活中找到对应的依据,但仅仅是你没找到,你没找到,不代表没有。只是科学家在实验室里面找到的这些标本的量,通过物理学研究中的某些方法放大或缩小或者替代,找到了这种对应的关系,然后用公式把它表达出来,每一个物理公式的出现都是象征着无数科学家本身所做的努力的。
Ⅸ 现实生活中能用数学知识解释的现象~要500字左右的
花朵为什么是圆的?
因为圆的面积是所有几何图形中最大的,所以光合作用强,有助于花朵的生长.因此花朵是圆的.
茶壶盖为什么是圆的?
因为圆的直径,半径都相等,不容易掉下去.而且区别其他几何图形,同样面积,圆形,甚至椭圆形的体积最大,容量最大.方的话,可能掉到杯子里
方的容易把角碰掉,而且不是很安全.圆的符合大众的审美观,大家喜欢圆的,使用也方便。其它的盖子也有,比较少.设计成圆形,无论从哪个角度放下去都正好合适.
动物数学气象学家Lorenz提出一篇论文,名叫“一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?”论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做“蝴蝶效应”。就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。Lorenz为何要写这篇论文呢? 这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。 这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小时后,结果出来了,不过令他目瞪口呆。结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。 参考资料:阿草的葫芦(下册)——远哲科学教育基金会 2、动物中的数学“天才” 蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。 丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”? 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。 冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。 真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。(生活时报)
Ⅹ 7.物理现象中的“对流”用数学语言如何描述
用文字表达就是用语言描述
用数学表达就是写出表达式