⑴ 数学的发展史是什么
数学的发展史:
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起。
现时数学已包括多个分支,创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论。
西方数学简史:
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展,而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术。第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。
除了认知到如何去数实际物件的数量,史前的人类也了解如何去数抽象概念的数量,如时间——日、季节和年。算术(加减乘除)也自然而然地产生了。
以上内容参考:网络——数学
⑵ 数学史有那几个发展阶段
1 (前3500-前500)数学起源与早期发展:古埃及数学、美索不达米亚(古巴比伦)数学
2(前600-5世纪)古代希腊数学:论证数学的发端、欧式几何
3(3世纪-14世纪)中世纪的中国数学、印度数学、阿拉伯数学:实用数学的辉煌
4(12世纪-17世纪)近代数学的兴起:代数学的发展、解析几何的诞生
5(14世纪-18世纪)微积分的建立:牛顿与莱布尼茨的微积分建立
6(18世纪-19世纪)分析时代:微积分的各领域应用
7(19世纪)代数的新生:抽象代数产生(近世代数)
8(19世纪)几何学的变革:非欧几何
9(19世纪)分析的严密化:微积分的基础的严密化
10二十世纪的纯粹数学的趋势
11二十一世纪应用数学的天下
以上是按数学发展的脉络进行划分的,不是按时间顺序,时代也都标注了.
如果在简单说就是 1古代数学 希腊的论证数学与中国的实用数学的起源发展
2近代数学 微积分的发现、应用、严密化
3现代数学 对数学的基础的思考
其他的都是这三个大的数学发展脉络的附属品,贯穿数学发展的思想只有2个,就是希腊贵族式的论证数学与中国平民是的实用数学的思想的起源、发展、相互影响.(其中贵族数学是说希腊贵族人研究数学,平民不接触)
⑶ 简述数学发展的几个主要阶段
数学发展具有阶段性,因此研究者根据一定的原则把数学史分成若干时期。目前学术界通常将数学发展划分为以下五个时期:
1.数学萌芽期(公元前600年以前);
2.初等数学时期(公元前600年至17世纪中叶);
3.变量数学时期(17世纪中叶至19世纪20年代);
4.近代数学时期(19世纪20年代至第二次世界大战);
5.现代数学时期(20世纪40年代以来)。
⑷ 从数学的发展历史来看,数学的研究对象各个阶段有哪些
数学发展具有阶段性,因此根据一定的原则把数学史分成若干时期。目前通常将数学发展划分为以下五个时期:
1.数学萌芽期(公元前600年以前);
2.初等数学时期(公元前600年至17世纪中叶);
3.变量数学时期(17世纪中叶至19世纪20年代);
4.近代数学时期(19世纪20年代至第二次世界大战);
5.现代数学时期(20世纪40年代以来)
在数学萌芽期这一时期,数学经过漫长时间的萌芽阶段,在生产的基础上积累了丰富的有关数和形的感性知识。到了公元前六世纪,希腊几何学的出现成为第一个转折点,数学从此由具体的、实验的阶段,过渡到抽象的、理论的阶段,开始创立初等数学。此后又经过不断的发展和交流,最后形成了几何、算术、代数、三角等独立学科。世界上最古老的几个国家都位于大河流域:黄河流域的中国;尼罗河下游的埃及;幼发拉底河与底格里斯河的巴比伦国;印度河与恒河的印度。这些国家都是在农业的基础上发展起来的,因此他们就必须掌握四季气候变迁的规律。
现在对于古巴比伦数学的了解主要是根据巴比伦泥版,这些数学泥版表明,巴比伦自公元前2000年左右即开始使用60进位制的记数法进行较复杂的计算了,并出现了60进位的分数,用与整数同样的法则进行计算;已经有了关于倒数、乘法、平方、立方、平方根、立方根的数表;借助于倒数表,除法常转化为乘法进行计算。巴比伦数学具有算术和代数的特征,几何只是表达代数问题的一种方法。这时还没有产生数学的理论。对埃及古代数学的了解,主要是根据两卷纸草书。从这两卷文献中可以看到,古埃及是采用10进位制的记数法。埃及人的数学兴趣是测量土地,几何问题多是讲度量法的,涉及到田地的面积、谷仓的容积和有关金字塔的简易计算法。但是由于这些计算法是为了解决尼罗河泛滥后土地测量和谷物分配、容量计算等日常生活中必须解决的课题而设想出来的,因此并没有出现对公式、定理、证明加以理论推导的倾向。埃及数学的一个主要用途是天文研究,也在研究天文中得到了发展。由于地理位置和自然条件,古希腊受到埃及、巴比伦这些文明古国的许多影响,成为欧洲最先创造文明的地区。
希腊的数学是辉煌的数学,第一个时期开始于公元前6世纪,结束于公元前4世纪。泰勒斯开始了命题的逻辑证明,开始了希腊伟大的数学发展。进入公元前5世纪,爱利亚学派的芝诺提出了四个关于运动的悖论,柏拉图强调几何对培养逻辑思维能力的重要作用,亚里士多德建立了形式逻辑,并且把它作为证明的工具;德谟克利特把几何量看成是由许多不可再分的原子所构成。第二个时期自公元前4世纪末至公元1世纪,这时的学术中心从雅典转移到了亚历山大里亚,因此被称为亚历山大里亚时期。这一时期有许多水平很高的数学书稿问世,并一直流传到了现在。公元前3世纪,欧几里得写出了平面几何、比例论、数论、无理量论、立体几何的集大成的着作几何原本,第一次把几何学建立在演绎体系上,成为数学史乃至思想史上一部划时代的名着。之后的阿基米德把抽象的数学理论和具体的工程技术结合起来,根据力学原理去探求几何图形的面积和体积,奠定了微积分的基础。阿波罗尼写出了《圆锥曲线》一书,成为后来研究这一问题的基础。公元一世纪的赫伦写出了使用具体数解释求积法的《测量术》等着作。二世纪的托勒密完成了到那时为止的数理天文学的集大成着作《数学汇编》,结合天文学研究三角学。三世纪丢番图着《算术》,使用简略号求解不定方程式等问题,它对数学发展的影响仅次于《几何原本》。希腊数学中最突出的三大成就--欧几里得的几何学,阿基米德的穷竭法和阿波罗尼的圆锥曲线论,标志着当时数学的主体部分--算术、代数、几何基本上已经建立起来了。
罗马人征服了希腊也摧毁了希腊的文化。公元前47年,罗马人焚毁了亚历山大里亚图书馆,两个半世纪以来收集的藏书和50万份手稿竞付之一炬。
从5世纪到15世纪,数学发展的中心转移到了东方的印度、中亚细亚、阿拉伯国家和中国。在这1000多年时间里,数学主要是由于计算的需要,特别是由于天文学的需要而得到迅速发展。古希腊的数学看重抽象、逻辑和理论,强调数学是认识自然的工具,重点是几何;而古代中国和印度的数学看重具体、经验和应用,强调数学是支配自然的工具,重点是算术和代数。
印度的数学也是世界数学的重要组成部分。数学作为一门学科确立和发展起来。印度数学受婆罗门教的影响很大,此外还受希腊、中国和近东数学的影响,特别是受中国的影响。
此外,阿拉伯数学也有着举足轻重的作用,阿拉伯人改进了印度的计数系统,"代数"的研究对象规定为方程论;让几何从属于代数,不重视证明;引入正切、余切、正割、余割等三角函数,制作精密的三角函数表,发现平面三角与球面三角若干重要的公式,使三角学脱离天文学独立出来。
在我国,春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。战国时期的百家争鸣也促进了数学的发展,秦汉是封建社会的上升时期,经济和文化均得到迅速发展。中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学着作的出现。
《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名着。魏、晋时期赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。这之后,我国数学经过像秦九邵、祖冲之、郭守敬、程大位这样的数学家进一步发展了我国的数学事业。
在西欧的历史上,中世纪的黑暗在一定程度上阻碍了数学的发展,15世纪开始了欧洲的文艺复兴,使欧洲的数学得以进一步发展,15世纪的数学活动集中在算术、代数和三角方面。缪勒的名着《三角全书》是欧洲人对平面和球面三角学所作的独立于天文学的第一个系统的阐述。16世纪塔塔利亚发现三次方程的代数解法,接受了负数并使用了虚数。16世纪最伟大的数学家是伟达,他写了许多关于三角学、代数学和几何学的着作,其中最着名的《分析方法入门》改进了符号,使代数学大为改观;斯蒂文创设了小数。17世纪初,对数的发明是初等数学的一大成就。1614年,耐普尔首创了对对数,1624年布里格斯引入了相当于现在的常用对数,计算方法因而向前推进了一大步。至此,初等数学的主体部分--算术、代数与几何已经全部形成,并且发展成熟。
变量数学时期从17世纪中叶到19世纪20年代,这一时期数学研究的主要内容是数量的变化及几何变换。这一时期的主要成果是解析几何、微积分、高等代数等学科。
17世纪是一个开创性的世纪。这个世纪中发生了对于数学具有重大意义的三件大事。 首先是伽里略实验数学方法的出现,它表明了数学与自然科学的一种崭新的结合。其特点是在所研究的现象中,找出一些可以度量的因素,并把数学方法应用到这些量的变化规律中去。第二件大事是笛卡儿的重要着作《方法谈》及其附录《几何学》于1637年发表。它引入了运动着的一点的坐标的概念,引入了变量和函数的概念。由于有了坐标,平面曲线与二元方程之间建立起了联系,由此产生了一门用代数方法研究几何学的新学科--解析几何学。这是数学的一个转折点,也是变量数学发展的第一个决定性步骤。第三件大事是微积分学的建立,最重要的工作是由牛顿和莱布尼兹各自独立完成的。他们认识到微分和积分实际上是一对逆运算,从而给出了微积分学基本定理,即牛顿-莱布尼兹公式。17世纪的数学,发生了许多深刻的、明显的变革。在数学的活动范围方面,数学教育扩大了,从事数学工作的人迅速增加,数学着作在较广的范围内得到传播,而且建立了各种学会。在数学的传统方面,从形的研究转向了数的研究,代数占据了主导地位。在数学发展的趋势方面,开始了科学数学化的过程。最早出现的是力学的数学化,它以1687年牛顿写的《自然哲学的数学原理》为代表,从三大定律出发,用数学的逻辑推理将力学定律逐个地、必然地引申出来。18世纪数学的各个学科,如三角学、解析几何学、微积分学、数论、方程论,得到快速发展。19世纪20年代出现了一个伟大的数学成就,它就是把微积分的理论基础牢固地建立在极限的概念上。柯西于1821年在《分析教程》一书中,发展了可接受的极限理论,然后极其严格地定义了函数的连续性、导数和积分,强调了研究级数收敛性的必要,给出了正项级数的根式判别法和积分判别法。而在这一时期,非欧几何的出现,成为数学史上的一件大事,非欧几何的出现,改变了人们认为欧氏几何唯一地存在是天经地义的观点。它的革命思想不仅为新几何学开辟了道路,而且是20世纪相对论产生的前奏和准备。这时人们发现了与通常的欧几里得几何不同的、但也是正确的几何--非欧几何。非欧几何所导致的思想解放对现代数学和现代科学有着极为重要的意义,因为人类终于开始突破感官的局限而深入到自然的更深刻的本质。非欧几何的发现,黎曼和罗巴切夫斯基功不可灭,黎曼推广了空间的概念,开创了几何学一片更广阔的领域--黎曼几何学。后来,哈密顿发现了一种乘法交换律不成立的代数--四元数代数。不可交换代数的出现,改变了人们认为存在与一般的算术代数不同的代数是不可思议的观点。它的革命思想打开了近代代数的大门。另一方面,由于一元方程根式求解条件的探究,引进了群的概念。19世纪20~30年代,阿贝尔和伽罗瓦开创了近世代数学的研究。这时,代数学的研究对象扩大为向量、矩阵,等等,并渐渐转向代数系统结构本身的研究。19世纪还发生了第三个有深远意义的数学事件:分析的算术化。1874年威尔斯特拉斯提出了被称为"分析的算术化"的着名设想,实数系本身最先应该严格化,然后分析的所有概念应该由此数系导出。19世纪后期,由于狄德金、康托和皮亚诺的工作,这些数学基础已经建立在更简单、更基础的自然数系之上。
20世纪40~50年代,世界科学史上发生了三件惊天动地的大事,即原子能的利用、电子计算机的发明和空间技术的兴起。此外还出现了许多新的情况,促使数学发生急剧的变化。1945年,第一台电子计算机诞生以后,由于电子计算机应用广泛、影响巨大,围绕它很自然要形成一门庞大的科学。计算机的出现更是促进了数学的发展,使数学分为了三个领域,纯粹数学,计算机数学,应用数学。 现代数学虽然呈现出多姿多彩的局面,但是它的主要特点可以概括如下:(1)数学的对象、内容在深度和广度上都有了很大的发展,分析学、代数学、几何学的思想、理论和方法都发生了惊人的变化,数学的不断分化,不断综合的趋势都在加强。(2)电子计算机进入数学领域,产生巨大而深远的影响。(3)数学渗透到几乎所有的科学领域,并且起着越来越大的作用,纯粹数学不断向纵深发展,数理逻辑和数学基础已经成为整个数学大厦基础。
⑸ 现代数学的发展趋势有哪些
现代数学已经由以往的面貌脱胎换骨:极限理论让微积分变得完善,集合论让数学变得稳固等20世纪是数学大发展的世纪。数学的许多重大难题得到完满解决, 如费尔玛大定理的证明,有限单群分类工作的完成等, 从而使数学的基本理论得到空前发展。 计算机的出现是20世纪数学发展的重大成就,同时极大推动了数学理论的深化和数学在社会和生产力第一线的直接应用。回首20世纪数学的发展, 数学家们深切感谢20世纪最伟大的数学大师大卫. 希尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的着名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向, 其对数学发展的影响和推动是巨大的,无法估量的。 效法希尔伯特, 许多当代世界着名的数学家在过去几年中整理和提出新的数学难题, 希冀为新世纪数学的发展指明方向。 这些数学家知名度是高的, 但他们的这项行动并没有引起世界数学界的共同关注。 2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”, 克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。克雷数学所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向, 而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。 2000年5月24日, 千年数学会议在着名的法兰西学院举行。 会上,98年费尔兹奖获得者伽沃斯(Gowers)以“数学的重要性”为题作了演讲, 其后,塔特(Tate)和阿啼亚 (Atiyah) 公布和介绍了这七个“千年大奖问题”。 克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的阐述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。 每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖。 现在先只列出一个清单:这七个“千年大奖问题”是: NP 完全问题, 郝治(Hodge) 猜想, 庞加莱(Poincare) 猜想, 黎曼(Rieman)假设,杨-米尔斯 (Yang-Mills) 理论, 纳卫尔-斯托可(Navier-Stokes)方程, BSD(Birch and Swinnerton-Dyer)猜想。 “千年大奖问题”公布以来, 在世界数学界产生了强烈反响。这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。认识和研究“千年大奖问题”已成为世界数学界的热点。不少国家的数学家正在组织联合攻关。 可以预期, “千年大奖问题” 将会改变新世纪数学发展的历史进程
⑹ 数学是怎么产生的,它的发展历史是什么
产生:数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题
数学的发展史大致可以分为四个时期。
1、第一时期
数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。
2、第二时期
初等数学,即常量数学时期。这个时期的基本的、最简单的成果构成中学数学的主要内容。这个时期从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年。这个时期逐渐形成了初等数学的主要分支:算数、几何、代数。
3、第三时期
变量数学时期。变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分(Calculus),即高等数学中研究函数的微分。
4、第四时期
现代数学。现代数学时期,大致从19世纪初开始。数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征。
(6)20世纪数学有哪些发展扩展阅读:
发展过程中研究出的数学成果:
1、李氏恒定式
数学家李善兰在级数求和方面的研究成果,在国际上被命名为李氏恒定式。
2、华氏定理
华氏定理是我国着名数学家华罗庚的研究成果。华氏定理为:体的半自同构必是自同构自同体或反同体。数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”。
⑺ 与19世纪相比,20世纪纯粹数学的发展表现出哪些主要的特征或趋势
跟19世纪相比,20世纪纯粹数学的发展,表现下面这样一个特征跟趋势.也就是首先,就是说,更高的抽象化,第二个特征或者叫趋势,更强的统一性,第三个趋势是更深入地对基础的探讨.我后面两个特征,实际上,本质上也是属于抽象化,所以我今天重点还是谈谈20世纪纯粹数学里面更高的抽象化这样一个趋势,那么,抽象化本来是数学的固定的特征,那么,20世纪的抽象化它跟以前的数学发展有什么不同呢?我想20世纪数学的抽象化主要是受了两大因素的推动,一个就是集合论的观点,还有一个是公理化的方法,这个是跟过去的时代是不一样的.那么,集合论的观点,我们知道,集合论本来是德国数学家康托,为了使得分析微积分严格化,而产生的这样一个分支,那么,康托是主要的代表人物,但是,康托的集合,主要是指的数的集合,或者点的集合,那么,后来呢,经过其他数学家,比如说,法国的弗莱歇,他们把集合论加以发展,发展成推广成为任意元素,这个集合的元素可以是任意的对象这样一个抽象的对象,就产生了一般的集合论,抽象的集合论,这个抽象的集合论,后来被发现,是数学各个领域的一个很有用的语言.它可以在数学各个领域里边作为一种通用的语言来描述数学的一些定理,来建立一些概念.
另外一个是公理化方法,我刚才说,20世纪纯粹数学抽象化趋势受第二个推动的大的因素,公理化方法,德国数学家,20世纪也应该算是可以数在前头的一位,赫尔曼外伊他说过这样一句话,他在总结20世纪上半世纪数学发展的时候,他说过这样一句话,他说,20世纪数学的一个十分突出的方面,是公理化方法所起的作用的极度增长,以前他说,公理化仅仅是用来阐明我们所建立的理论的基础.但是,现在,他却成为具体数学研究的工具.这是赫尔曼外伊的一个看法.
⑻ 截至19世纪末世界的数学领域最顶尖的成就有哪些20世纪末又有哪些
如下:
19世纪:复变函数论的创立和分析学的严格化,非欧几里得几何的问世和射影几何的完善,群论和非交换代数的诞生,是这一世纪典型的数学成就。它们所蕴含的新思想,深刻地影响着20世纪的数学。
20世纪末的有:极小极大定理(对策论)、布劳威尔不动点定理(拓扑学)、莫尔斯定理(奇点理论)、停机定理(计算的理论)、单纯形法(最优化理论)。
介绍
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。
⑼ 20世纪数学观的发展有何特点
(1)纯粹数学出现了一些重大突破。如,连续统假设,大基数问题等;在数理逻辑中的“力迫法”,“模型论”,“广义函数论”;在拓扑学中的“怪球定理”,选择公理,决定性公理的讨论。出现了数学的各种新思潮。如,非标准分析,模糊数学、突变理论,结构数学,构造数学等等。
(2)数学渗透到几乎所有的学术领域(不仅自然科学),发挥越来越大的作用。
实际上,科学的不断发展和进步,要求将研究对象定量化或数学化。一门学科成熟的程度,甚至可以用定量描述的情况来确定。例如过去生物学很少使用数学,现在却不同了,出现了生物数学,生物统计学,数理生物学等学科。经济学、心理学、历史学也用了数学方法。甚至靠生动的形象思维来创作的文学作品《红楼梦》、《莎士比亚剧作》的研究分析,也借助了数学。
另一方面,应用数学的新科目,雨后春笋般地兴起,如对策论(博奕论)、规划论、排队论、最优化方法(如优选法、统筹法等)管理科学、运筹学等。还有控制论、信息论、系统论等综合学科相继产生与发展。
(3)集合论的观点逐渐地提高地位,公理化方法日趋完善。
集合是现代数学的基本概念,以此概念为基础,使数学得以新的发展。通过对公理化方法的完善,使人们深入研究了数学基础问题。
(4)电子计算机进入数学领域,产生了难以估量的影响。
中国着名数学家吴文俊研究机器证明中,取得了可喜成果。他指出,我们应注意到对于数学未来发展具有决定性影响的一个不可估量的方面,是计算机对数学的冲击。微型机的发展和应用,将尤其如此,数学家对此前景必须有足够的思想准备。
最后,我们深信,数学的前景是光明的。它在矛盾中前进,甚至在许多方面势如破竹。正如布尔巴基学派的领导人狄多涅(JeanDieudonnè)在一次演说中重申希尔伯特的箴言:“我们必须知道,而且一定会知道一数学不会给不可知论留下地盘”。