导航:首页 > 数字科学 > 简述常见的数学手段有哪些

简述常见的数学手段有哪些

发布时间:2023-01-30 06:24:57

⑴ 数学的方法有哪些

1.数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

2.联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

3.分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

4.待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

5.配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

6.换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。

7.分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”

⑵ 数学方法有哪些

数学方法即用数学语言表述事物的状态、关系和过程,并加以推导、演算和分析,以形成对问题的解释、判断和预言的方法。所谓方法,是指人们为了达到某种目的而采取的手段、途径和行为方式中所包含的可操作的规则或模式.人们通过长期的实践,发现了许多运用数学思想的手段、门路或程序。同一手段、门路或程序被重复运用了多次,并且都达到了预期的目的,就成为数学方法。数学方法是以数学为工具进行科学研究的方法,即用数学语言表达事物的状态、关系和过程,经过推导、运算与分析,以形成解释、判断和预言的方法。
在中学数学中经常用到的基本数学方法,大致可以分为以下三类:

(1)逻辑学中的方法
例如分析法(包括逆证法)、综合法、反证法、归纳法、穷举法(要求分类讨论)等。这些方法既要遵从逻辑学中的基本规律和法则,又因为运用于数学之中而具有数学的特色。

(2)数学中的一般方法
例如建模法、消元法、降次法、代入法、图像法(也称坐标法,在代数中常称图像法,在我们今后要学习的解析几何中常称坐标法)、比较法(数学中主要是指比较大小,这与逻辑学中的多方位比较不同)、放缩法,以及将来要学习的向量法、数学归纳法(这与逻辑学中的不完全归纳法不同)等.这些方法极为重要,应用也很广泛。

(3)数学中的特殊方法
例如配方法、待定系数法、消元法、公式法、换元法(也称之为中间变量法)、拆项补项法(含有添加辅助元素实现化归的数学思想)、因式分解诸方法,以及平行移动法、翻折法等。这些方法在解决某些数学问题时也起着重要作用。

⑶ 数学的方法

数学方法 - 基本概况
所谓方法,是指人们为了达到某种目的而采取的手段、途径和行为方式中所包含的可操 作的规则或模式.人们通过长期的实践,发现了许多运用数学思想的手段、门路或程
数学方法运用
序.同一手段、门路或程序被重复运用了多次,并且都达到了预期的目的,就成为数学方法.数学方法是以数学为工具进行科学研究的方法,即用数学语言表达事物的状态、关系和过程,经过推导、运算与分析,以形成解释、判断和预言的方法.用数学语言表述事物的状态、关系和过程,并加以推导、演算和分析,以形成对问题的解释、判断和预言的方法。无论自然科学、技术科学或社会科学,为了要对所研究的对象的质获得比较深刻的认识,都需要对之作出量的方面的刻画,这就需要借助于数学方法。对不同性质和不同复杂程度的事物,运用数学方法的要求和可能性是不同的。总的看,一门科学只有当它达到了能够运用数学时,才算真正成熟了。在现代科学中,运用数学的程度,已成为衡量一门科学的发展程度,特别是衡量其理论成熟与否的重要标志。
在科学研究中成功地运用数学方法的关键,就在于针对所要研究的问题提炼出一个合适的数学模型,这个模型既能反映问题的本质,又能使问题得到必要的简化,以利于展开数学推导。
建立数学模型是对问题进行具体分析的科学抽象过程,因而要善于抓住主要矛盾,突出主要因素和关系,撇开那些次要因素和关系。建立模型的过程还是一个“化繁为简”、“化难为易”的过程。当然,简化不是无条件的,合理的简化必须考虑到实际问题所能允许的误差范围和所用的数学方法要求的前提条件。对于同一个问题可以建立不同的数学模型,同时在研究过程中不断检验、比较,逐渐筛选出最优的模型,并在应用过程中继续加以检验和修正,使之逐步完善。从一个特殊问题抽象出来的数学模型常常具有某种程度的普遍性,这是因为一个特殊的数学模型可以发展成为描述同一类现象的共同的数学模型。已经获得广泛应用并且卓有成效的数学模型大体上有两类:一类称为确定性模型,即用各种数学方程如代数方程、微分方程、积分方程、差分方程等描述和研究各种必然性现象,在这类模型中事物的变化发展遵从确定的力学规律性;另一类称为随机性模型,即用概率论和数理统计方法描述和研究各种或然性现象,事物的发展变化在这类模型中表现为随机性过程,并遵从统计规律,而且具有多种可能的结果。客观世界的必然性现象和或然性现象并不是截然分开的。有些事物主要地表现为必然性现象,但是当随机因素的影响不可忽视时,则有必要在确定性模型中引入随机因素,从而形成随机微分方程这样一类数学模型。20世纪70年代以来,还陆续发现在一些确定性模型中,如某些描述保守系统或耗散结构的非线性方程,并不附加随机因素,但却在一定的参数范围内表现出“内在的随机性”,即出现分岔和混沌的随机行为。这类现象的机制及其数学问题已引起数学家和科学家的重视,目前正在研究中。
数学本身是不断发展的,对各种量、量之间以及量的变化之间关系的研究也在日益深入,新的数学概念、新的数学分支在不断出现,新的数学方法同样在相应地孕育和萌生。随着数学日益广泛地向各门科学渗透,与各种对象和各种问题相结合,人们正在从中提炼出各种新的数学模型,创建各种新的数学工具。尤其是电子计算机的运用使数学方法显示出新的生机,出现了所谓“数学实验方法”。这种方法的实质是不在实际客体上实验,而在其数学模型上“实验”,这种“实验”的操作就是在电子计算机上实现大量的数值运算和逻辑运算。这就使以往由于工作量大而难以进行的试算课题有可能完成。数学方法在这方面的发展前景是可观的。
数学方法 - 基本特征
数学方法具有以下三个基本特征:一是高度的抽象性和概括性;二是精确性,即逻辑的严密性及结论的确定性;三是应用的普遍性和可操作性.
数学方法
数学方法 - 种类
在中学数学中经常用到的基本数学方法,大致可以分为以下三类:(1)逻辑学中的方法.例如分析法(包括逆证法)、综合法、反证法、归纳法、穷举法(要求分类讨论)等.这些方法既要遵从逻辑学中的基本规律和法则,又因为运用于数学之中而具有数学的特色.。(2)数学中的一般方法.例如建模法、消元法、降次法、代入法、图象法(也称坐标法,在代数中常称图象法,在我们今后要学习的解析几何中常称坐标法)、比较法(数学中主要是指比较大小,这与逻辑学中的多方位比较不同)、放缩法,以及将来要学习的向量法、数学归纳法(这与逻辑学中的不完全归纳法不同)等.这些方法极为重要,应用也很广泛。(3)数学中的特殊方法.例如配方法、待定系数法、加减(消元)法、公式法、换元法(也称之为中间变量法)、拆项补项法(含有添加辅助元素实现化归的数学思想)、因式分解诸方法,以及平行移动法、翻折法等.这些方法在解决某些数学问题时也起着重要作用,我们不可等闲视之.

数学方法 - 作用
数学方法在科学技术研究中具有举足轻重的地位和作用:一是提供简洁精确的形式化语言,二是提供数量分析及计算的方法,三是提供逻辑推理的工具.现代科学技术特别是电子计算机的发展,与数学方法的地位和作用的强化正好是相辅相成.
数学方法 - 发展前景
无论自然科学、技术科学或社会科学,为了要对所研究的对象的质获得比较深刻的认识,都需要对之作出量的方面的刻画,这就需要借助于数学方法。对不同性质和不同复杂程度的事物,运用数学方法的要求和可能性是不同的。总的看,一门科学只有当它达到了能够运用数学时,才算真正成熟了。在现代科学中,运用数学的程度,已成为衡量一门科学的发展程度,特别是衡量其理论成熟与否的重要标志。在科学研究中成功地运用数学方法的关键,就在于针对所要研究的问题提炼出一个合适的数学模型,这个模型既能反映问题的本质,又能使问题得到必要的简化,以利于展开数学推导。建立数学模型是对问题进行具体分析的科学抽象过程,因而要善于抓住主要矛盾,突出主要因素和关系,撇开那些次要因素和关系。建立模型的过程还是一个“化繁为简”、“化难为易”的过程。当然,简化不是无条件的,合理的简化必须考虑到实际问题所能允许的误差范围和所用的数学方法要求的前提条件。对于同一个问题可以建立不同的数学模型,同时在研究过程中不断检验、比较,逐渐筛选出最优的模型,并在应用过程中继续加以检验和修正,使之逐步完善。从一个特殊问题抽象出来的数学模型常常具有某种程度的普遍性,这是因为一个特殊的数学模型可以发展成为描述同一类现象的共同的数学模型。已经获得广泛应用并且卓有成效的数学模型大体上有两类:一类称为确定性模型,即用各种数学方程如代数方程、微分方程、积分方程、差分方程等描述和研究各种必然性现象,在这类模型中事物的变化发展遵从确定的力学规律性;另一类称为随机性模型,即用概率论和数理统计方法描述和研究各种或然性现象,事物的发展变化在这类模型中表现为随机性过程,并遵从统计规律,而且具有多种可能的结果。客观世界的必然性现象和或然性现象并不是截然分开的。有些事物主要地表现为必然性现象,但是当随机因素的影响不可忽视时,则有必要在确定性模型中引入随机因素,从而形成随机微分方程这样一类数学模型。20世纪70年代以来,还陆续发现在一些确定性模型中,如某些描述保守系统或耗散结构的非线性方程,并不附加随机因素,但却在一定的参数范围内表现出“内在的随机性”,即出现分岔和混沌的随机行为。这类现象的机制及其数学问题已引起数学家和科学家的重视,目前正在研究中。数学本身是不断发展的,对各种量、量之间以及量的变化之间关系的研究也在日益深入,新的数学概念、新的数学分支在不断出现,新的数学方法同样在相应地孕育和萌生。随着数学日益广泛地向各门科学渗透,与各种对象和各种问题相结合,人们正在从中提炼出各种新的数学模型,创建各种新的数学工具。尤其是电子计算机的运用使数学方法显示出新的生机,出现了所谓“数学实验方法”。这种方法的实质是不在实际客体上实验,而在其数学模型上“实验”,这种“实验”的操作就是在电子计算机上实现大量的数值运算和逻辑运算。这就使以往由于工作量大而难以进行的试算课题有可能完成。数学方法在这方面的发展前景是可观的。
数学方法论
主要是研究和讨论数学的发展规律,数学的思想方法以及数学中的发现、发明与创新等法则的一门学问。
数学是一门工具性很强的科学,它和别的科学比较起来还具有较高的抽象性等特征,为了有效地发展它、改进它、应用它或者把它很好地传授给学生们,就要求对这门科学的发展规律、研究方法、发现与发明等法则有所掌握,因此,数学研究工作者、数学教师、科技工作者,以及高年级大学生、研究生等都需要知道一些数学方法论”。
数学方法对于数学的发展起着关键性的推动作用,许多比较困难的重大问题的解决,往往取决于数学概念和数学方法上的突破,如历史上古希腊三大尺规作图难题,就是笛卡尔创立解析几何之后,数学家们借助解析几何,采用了RMI(关系——映射——反演)方法,才得到彻底的解决;这又启发了后来的数学家们采用类似的办法解决了欧氏几何与实数理论的相对相容性问题。又如,代数方程的根式解的问题,也是在伽罗瓦群论思想方法的指导下,才得以圆满解决;不仅如此,群论的思想方法还使得代数学的研究发生了巨大的变革,从古典的局部性研究转向了近代的系统结构整体性的研究。
对数学方法论的早期研究,十七世纪就已经开始了,法国数学家笛卡尔和德国数学家莱布尼兹都曾做过这方面的探讨,并出版过专着,历史上不少着名的大数学家,如欧拉,高斯、庞加莱、希尔伯特等人也曾就数学方法沦的问题发表过许多精辟的见解,但是,对数学方法论进行系统地研究,还是最近几十年间的事,在这方面做了突出的贡献,当首推美国数学家和数学教育家波利亚,最近几十年来.由于现代电子计算机技术已经进入了人工智能和摸拟思维的阶段,就更加促使数学方法论蓬勃发展起来;信息论,控制论、认知科学和人工智能的最新研究成果相继引进了数学方法论的领域。而徐利治先生正式提出“数学方法论”这一名称,并使其成为一门独立的学科,迄今仅二十来年。
数学科学和数学史料是数学方法论的源泉,同时,数学方法论还涉及到哲学、思维科学,心理学、一般科学方法论、系统科学等众多的领域。
数学方法论分为宏观数学方法论与微观数学方法论。
数学宏观方法论所研究的是整个数学的产生、形成和发展的规律,数学理论的构造,以及数学与其它科学之间的关系。研究宏观方法论的主要途径之一是研究数学史。研究宏观方法论的另一条主要途径是研究数学理论体系的构造。
数学微观方法论所研究的是一些比较具体数学方法,特别是数学发现和数学创造的方法。包括数学思维方法、数学解题心理与数学解题理论等等。

⑷ 小学数学教学有哪些方法

小学数学要培养学生的形象思维能力,并在此基础上,为发展抽象思维能力打下坚实的基础。下面我来给大家介绍小学数学教学方法,希望对大家有帮助!

1、数学模型思想方法

所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。

2、整体思想方法

对数学问题的观察和分析从宏观和大处着手,整体把握化零为整,往往不失为一种更便捷更省时的方法。

3、比较思想方法

比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法

用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。

5、类比思想方法

类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。

6、转化思想方法

转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法

分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

8、集合思想方法

集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。

9、数形结合思想方法

数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。

10、统计思想方法

小学数学中的'统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。

11、极限思想方法

事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。

12、代换思想方法

他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?

13、可逆思想方法

它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。

14、化归思维方法

把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。

15、变中抓不变的思想方法

在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解。如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?

16、对应思想方法

对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。

17、假设思想方法

假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

⑸ 数学的教学方法有哪些

有7种常用的数学教学方法:

1.讲授法是一种教学方法,教师使用口语来描述情境,叙述事实,解释概念,论证原则和澄清规则。

2..谈话法又称回答法,是通过教师和学生之间的对话传播和学习知识的方法。其特点是教师指导学生利用现有的经验和知识回答教师提出的问题,获取新知识或巩固和检查所获得的知识。

3.讨论方法是一种方法,使整个班级或小组围绕某个中心问题发表自己的意见和看法,共同探索,互相激励,进行头脑风暴和学习。

4.演示方法是一种教学方法,教师通过现代教学方法向学生展示物理或物理图像进行观察,或通过示范实验,使学生获得知识更新。它是一种辅助教学方法,通常与讲座,对话,讨论等结合使用。

5.练习法是学生在教师指导下巩固知识,培养各种学习技能的基本方法。这也是学生学习过程中的一项重要实践活动。

6.实验法是一种教学方法,学生在教师的指导下使用某些设备和材料,通过操作引起实验对象的某些变化,并通过观察这些变化获得新知识或验证知识。一种常用于自然科学学科的方法。

7.实习是一种教学方法,学生可以使用某些实习场所,参加某些实习,掌握一定的技能和相关的直接知识,或者验证间接知识并全面应用所学知识。

(5)简述常见的数学手段有哪些扩展阅读:

数学教学方法(methods. of mathematics teach-ing)教学方法的一种.教师指导学生学好数学基础知识,提高数学基本技能,发展数学才能,进行思品德教育的方式、方法.它既包括了教师教的方法,也包括了学生学的方法.数学教学方法对于激发学生学习数学的兴趣,实现数学教学目的,提高数学教学质量,都起着重要的作用.

远在中国春秋末期和古希腊时期,就有讲解、问答、练习、复习等方法的记载.古代主要采用讲授法,近代推行了演示、观察、实验、参观等新方法,并改进了解、谈话等方法.近些年来随着现代科学技术的进步,现代化教学手段的使用,教育学与心理学新成就的出现,信息论、控制论与系统论新学科的建立与发展,为数学教学方法的改进与发展提供了良好条件。

常用的数学教学方法有:启发、讲解、谈话、练习、讨论、演示、实习、观察、复习等,其中,启发、讲解、谈话、练习等用的较多.当前国内外正在实验的数学教学方法有:发现、研究、自学辅导、程序教学、最优化教学、算法化教学、“读读、议议、讲讲、练练”等。

⑹ 数学方法有哪些啊

数学方法有建模法和消元法等。降次法代入法图象法也称坐标法,在代数中常称图象法,在我们今后要学习的解析几何中常称坐标法比较法数学中主要是指比较大小,这与逻辑学中的多方位比较不同放缩法,以及将来要学习的向量法。

数学方法的特点

数学归纳法这与逻辑学中的不完全归纳法不同等。这些方法极为重要,应用也很广泛。数学本身是不断发展的,对各种量量之间以及量的变化之间关系的研究也在日益深入,新的数学概念新的数学分支在不断出现,新的数学方法同样在相应地孕育和萌生。

随着数学日益广泛地向各门科学渗透,与各种对象和各种问题相结合,人们正在从中提炼出各种新的数学模型,创建各种新的数学工具,尤其是电子计算机的运用使数学方法显示出新的生机,出现了所谓数学实验方法。

⑺ 小学数学课堂教学常见的教学手段有哪些

我国中小学常用的教学方法有:
1)讲授法
讲授法是教师通过口头语言向学生传授知识的方法。讲授法包括讲述法、讲解法、讲读法和讲演法。教师运用各种教学方法进行教学时,大多都伴之以讲授法。这是当前我国最经常使用的一种教学方法。
2)谈论法
谈论法亦叫问答法。它是教师按一定的教学要求向学生提出问题,要求学生回答,并通过问答的形式来引导学生获取或巩固知识的方法。谈论法特别有助于激发学生的思维,调动学习的积极性,培养他们独立思考和语言表述的能力。初中,尤其是小学低年级常用谈论法。
谈论法可分复习谈话和启发谈话两种。复习谈话是根据学生已学教材向学生提出一系列问题,通过师生问答形式以帮助学生复习、深化、系统化已学的知识。启发谈话则是通过向学生提出来思考过的问题,一步一步引导他们去深入思考和探取新知识。
3)演示法
演示教学是教师在教学时,把实物或直观教具展示给学生看,或者作示范性的实验,通过实际观察获得感性知识以说明和印证所传授知识的方法。
演示教学能使学生获得生动而直观的感性知识,加深对学习对象的印象,把书本上理论知识和实际事物联系起来,形成正确而深刻的概念;能提供一些形象的感性材料,引起学习的兴趣,集中学生的注意力,有助于对所学知识的深入理解、记忆和巩固;能使学生通过观察和思考,进行思维活动,发展观察力、想象力和思维能力。
4)练习法
练习法是学生在教师的指导下,依靠自觉的控制和校正,反复地完成一定动作或活动方式,借以形成技能、技巧或行为习惯的教学方法。从生理机制上说,通过练习使学生在神经系统中形成一定的动力定型,以便顺利地、成功地完成某种活动。练习在各科教学中得到广泛的应用,尤其是工具性学科(如语文、外语、数学等)和技能性学科(如体育、音乐、美术等)。练习法对于巩固知识,引导学生把知识应用于实际,发展学生的能力以及形成学生的道德品质等方面具有重要的作用。
5)读书指导法
读书指导法是教师指导学生通过阅读教科书、参考书以获取知识或巩固知识的方法。学生掌握书本知识,固然有赖于教师的讲授,但还必须靠他们自己去阅读、领会,才能消化、巩固和扩大知识。特别是只有通过学生独立阅读才能掌握读书方法,提高自学能力,养成良好的读书习惯。
6)课堂讨论法
课堂讨论法是在教师的指导下,针对教材中的基础理论或主要疑难问题,在学生独立思考之后,共同进行讨论、辩论的教学组织形式及教学方法,可以全班进行,也可分大组进行。
7)实验法
实验法是学生在教师的指导下,使用一定的设备和材料,通过控制条件的操作过程,引起实验对象的某些变化,从观察这些现象的变化中获取新知识或验证知识的教学方法。在物理、化学、生物、地理和自然常识等学科的教学中,实验是一种重要的方法。一般实验是在实验室、生物或农业实验园地进行的。有的实验也可以在教室里进行。实验法是随着近代自然科学的发展兴起的。现代科学技术和实验手段的飞跃发展,使实验法发挥越来越大的作用。通过实验法,可以使学生把一定的直接知识同书本知识联系起来,以获得比较完全的知识,又能够培养他们的独立探索能力、实验操作能力和科学研究兴趣。它是提高自然科学有关学科教学质量不可缺少的条件。
8)启发法
启发教学可以由一问一答、一讲一练的形式来体现;也可以通过教师的生动讲述使学生产生联想,留下深刻印象而实现。所以说,启发性是一种对各种教学方法和教学活动都具有的指导意义的教学思想,启发式教学法就是贯彻启发性教学思想的教学法。也就是说,无论什么教学方法,只要是贯彻了启发教学思想的,都是启发式教学法,反之,就不是启发式教学法。
9)实习法
实习法就是教师根据教学大纲的要求,在校内外组织学生实际的学习操作活动,将书本知识应用于实际的一种教学方法。这种方法能很好地体现理论与实际相结合的精神,对培养学生分析问题和解决问题能力,特别是实际操作本领具有重要意义。实习法,在自然科学各门学科和职业教育中占有重要的地位。这种方法和实验方法比较起来,虽有很多类似的地方,但它在让学生获得直接知识,验证和巩固所学的书本知识,培养学生从事实际工作的技能和技巧以及能力等方面,却有其特殊的作用。

⑻ 小学数学教学手段有哪些

好的教学手段可以带来高效率的课堂质量,该如何提高小学数学的教学质量呢?我将带来以下七种数学常见的教学手段。

小学数学教学手段有哪些

一、数与代数

在数与代数中常用的教具有:情境图、计数器、计数棒,磁贴(书写数字磁贴、计算数字磁贴、数学符号磁贴),乘法口诀磁性卡片、钟表模型、分数演示器、天平、数字转盘、七巧板等。

情境图,在数与代数乃至整个小学数学的教学过程中应用的都非常广泛。很多考生都很纠结小学数学的课堂导入,想要生动形象的导入,但是又无奈与大脑中素材积累有限,尤其是在考试短短20分钟的备考时间内,要想出既生动有形象,还要与所教授内容相关的导入确实是难为广大考生。要想在试讲中取得好的成绩,导入除了要形象生动有趣之外,更重要的是要体现数学的学科特色,数学和其他学科有所不同,数学新课程标准强调数学教学要体现数学与生活的紧密联系,而在试讲过程中充分利用教材中的情境图,就可以让学生更加直观的体现数学来源于生活并应用于生活。例如:在教学四年级下册《乘法运算定律》时就可以利用情境图来导入,给学生展示情境图并提问“请同学们认真观察图片,你能发现哪些数学信息呢?根据你发现的数学信息,你又能提出哪些用乘法解决的问题呢?”待学生提出问题,列出算式,教师再引导学生观察算式发现规律,进而顺利成章的完成本节课教学目标,与此同时,增强了学生发现问题、分析问题、解决问题的能力。

计数棒在小学数学低年级的教学中应用的非常广泛。学生刚刚学习数数、刚刚学会简单的加减法时,教师往往都是通过让学生来数计数棒加深学生的直观感受。此外,在中年级学生刚刚接触竖式乘除法时,教师也可以让学生借助计数棒来帮助学生理解算理。例如:在三年级上册学习《多位数乘一位数——口算乘法》时,教师就是借用计数棒来帮助学生理解口算乘法的算理的。

在教小学生学会数数和认数的过程中,除了用上述的计数棒之外,计数器也会起到异曲同工的作用,因此如果在教数数和认数的试讲中二选一即可。但是计数器的在教学生认识计数单位或十进制时具有不可取代的作用,例如在小学二年级下册教学《10000以内数的认识》时就会用到计数器。

二、图形与几何

在图形与几何的教学中常用到的教具有:常见立体图形、常见平面图形、七巧板、多用三角板、抽拉式活动角、方格演示图、三角形内角和演示器、圆周率演示器、圆的面积推导演示器等等。

常见立体、平面图形的面积在教学图形认识的时候经常会用到,例如在教学《认识图形》时,当学生初步了解完常见图形的特征之后,就可以把磁性图形的模型贴在黑板上,让学生对图形进行分类,或者让学生找出图形并说出图形的名称,这样不仅调动学生的积极性,并且有助于发挥学生的主体地位,体现新课标的理念,有助于广大考生在考试中博得头筹。

七巧板是由一个正方形、五个三角形、一个平行四边形组成的七个小纸片(或小木片、塑料片等)。七巧板中蕴含着许多有趣的知识和技巧,它可以摆出千姿百态的图形,在小学数学的教学过程中的作用不可忽视。七巧板在图形的认识、角的认识、面积的教学等内容的教学过程中都起到非常重要的作用。例如在学生认识了基本的平面图形之后,教师可以出示一块七巧板,让学生说出其中图形的一块图形或者几块拼成的图形的名称;在学生学习了角的分类之后,可以试着让学生找出七巧板中的直角、锐角或钝角。学生在感受七巧板好玩的同时,也可以巩固所学内容。除此之外,七巧板在数与代数的分数教学过程中也有所运用。

什么是 教学 方法

1.讲授法是教师运用口头语言向学生描绘情境、叙述事实、解释概念、论证原理和阐明规律的一种教学方法。

2.谈话法又称回答法,它是通过师生的交谈来传播和学习知识的一种方法。其特点是教师引导学生运用已有的 经验 和知识回答教师提出的问题,借以获得新知识或巩固、检查已学的知识。

3.讨论法是在教师指导下,由全班或小组围绕某一种中心问题通过发表各自意见和看法,共同研讨,相互启发,集思广益地进行学习的一种方法。

4.演示法是教师把实物或实物的模象展示给学生观察,或通过示范性的实验,通过现代教学手段,使学生获得知识更新的一种教学方法。它是辅助的教学方法,经常与讲授、谈话、讨论等方法配合一起使用。

5.练习法是在教师指导下学生巩固知识和培养各种学习技能垢基本方法,也是学生学习过程中的一种主要的实践活动。

6.实验法是学生在教师的指导下,使用一定的设备和材料,通过操作,引起实验对象的某些变化,并从观察这些变化中获得新知识或验证知识的一种教学方法,它也是自然科学学科常用的一种方法。

7.实习法是学生利用一定实习场所,参加一定实习工作,以掌握一定的技能和有关的直接知识,或验证间接知识,综合运用所学知识的一种教学方法。

教学模式是在一定教学思想指导下建立起来的为完成某一教学课题而运用的比较稳定的教学方法的程序及策略体系,它由若干个有固定程序的教学方法组成。每种教学模式都有自己的指导思想,具有独特的功能。它们对教学方法的运用,对教学实践的发展有很大影响。

⑼ 关于数学的教学手段有哪些

数学是一门高深而奥妙无穷的学科,良好的教学方法对学生学好数学有很大的帮助。让我们来谈谈数学的教学手段总共有哪些吧:

数学教学手段有哪些

一、重学习环境,让学生参与数学教学

在讨论课上教师精心设计好讨论题,进行有理有据的指导,学生之间进行讨论研究。

二、重问题情境,让学生亲近数学

在数学教学中,教师要精心创设问题情境,激起学生对新知学习的热情,拉近学生与新知的距离,让学生亲近数学。

三、重动手操作,让学生体验数学

教师将数学教学设计成看得见,摸得着的物化活动,让学生对十分抽象的知识获取清晰的认识和理解,而且学生通过动手操作后获得的体验是非常深刻的。

四、重自主探索,让学生“再创造”数学

当学生对某种感兴趣的事物产生疑问并急于了解其中的奥秘时,教师不能简单地把自己知道的知识直接传授给学生,而应该充分相信学生的认知潜能,鼓励学生自主探索,积极从事观察、实验、猜测、推理、交流等数学活动,去大胆地“再创造”数学。

五、重生活应用,让学生实践数学

在教学中,教师应经常让学生运用所学知识去解决生活中的实际问题,使学生在实践数学的过程中及时掌握所学知识,如用数学知识去解释三角形的稳定性、平行四边形的不稳定性、圆的旋转不变性等等。

小学数学教学方法总结

一、形象思维方法

形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。

形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。

1、实物演示法

利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。

这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。再如,在一个圆形(方形)水塘周围栽树问题,如果能进行一个实际操作,效果要好得多。

二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。

特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。

所以,小学数学教师应尽可能多地制作一些数学教(学)具,而且这些教(学)具用过后要好好保存,可以重复使用。这样可以有效地提高课堂教学效率,提升学生的学习成绩。

绩。

2、图示法

借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。

图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。比如有的数学教师爱徒手画数学图形,难免造成不准确,使学生产生误解。

在课堂教学当中,要多用图示的方法来解决问题。有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段。

例1.把一根木头锯成3段需要24分钟,锯成6段需要多少分钟?(图略)

思维方法是:图示法。

思维方向是:锯几次,每次用几分钟。

思路是:锯3段锯了几次,每次用几分钟,锯6段锯了几次,需要多少分钟。

例2 .判断:等腰三角形中,点D是底边BC的中点,图甲的面积比图乙的面积大,图甲的周长比图乙的周长长。(图略)

思维方法:图示法。

思维方向:先比较面积,再比较周长。

思路:作条辅助线。图甲占的面积大,图乙所占面积小,所以“图甲的面积比图乙的面积大”是正确的。线段AD比曲线AD短,所以“图甲的周长比图乙的周长长”是错误的。

3、列表法

运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法。列表法清晰明了,便于分析比较、提示规律,也有利于记忆。它的局限性在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。比如,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都采用“列表法”。

用列表法解决传统数学问题:鸡兔同笼问题。制作三个表格:第一张表格是逐一举例法,根据鸡与兔共20只的条件,假设鸡只有1只,那么兔就有19只,腿共有78条……这样逐一列举,直至寻找到所求的答案;第二张表格是列举了几个以后发现了只数与腿数的规律,从而减少了列举的次数;第三张表格是从中间开始列举,由于鸡与兔共20只,所以各取10只,接着根据实际的数据情况确定列举的方向。

4、探索法

按照一定方向,通过尝试来摸索规律、探求解决问题思路的方法叫做探究法。我国着名数学家华罗庚说过,在数学里,“难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来。”苏霍姆林斯基说过:在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。“学习要以探究为核心”,是新课程的基本理念之一。人们在难以把问题转化为简单的、基本的、熟悉的、典型的问题时,常常采取的一种好方法就是探究、尝试。

第一、探究方向要准确,兴趣要高涨,切忌胡乱尝试或形式主义的探究。例如,教学“比例尺”时,教师创设“学生出题考老师”的教学情境,师:“现在我们考试好不好?”学生一听:很奇怪,正当学生疑惑之时,教师说:“今天改变过去的考试方法,由你们出题考老师,愿意吗?”学生听后很感兴趣。教师说:“这里有一幅地图,你们用直尺任意量出两地的距离,我都能很快地告诉你们这两地之间的实际距离,相信吗?”于是学生纷纷上台度量、报数,教师都一个接一个地回答对应的实际距离。学生这时更感到奇怪,异口同声地说:“老师您快告诉我们吧,您是怎样算的?”教师说:“其实呀,有一位好朋友在暗中帮助老师,你们知道它是谁吗?想认识它吗?”于是引出所要学习的内容“比例尺”。

第二、定向猜测,反复实践,在不断分析、调整中寻找规律。

例3 .找规律填数。

(1)1、4、 、10、13、 、19;

(2)2、8、18、32、 、72、 。

第三,独立探究与合作探究结合。独立,有自由的思维时空;合作,可以知识上互补,方法上互相借鉴,不时还能碰撞出智慧的火花。

小学数学教学活动中,教师应尽量创设让学生去探究的情景,创造让学生去探究的机会,鼓励有探究精神和习惯的学生。

5、观察法

通过大量具体事例,归纳发现事物的一般规律的方法叫做观察法。巴浦洛夫说:"应当先学会观察,不学会观察永远当不了科学家.”

小学数学“观察”的内容一般有:①数字的变化规律及位置特点;②条件与结论之间的关系;③题目的结构特点;④图形的特点及大小、位置关系。

如:观察一组算式:25×4=4×25,62×11=11×62,100×6=6×100……归纳出乘法交换率:在乘法算式里,交换两个因数的位置,积不变。

“观察”的要求:

第一、观察要细致、准确。

例4 .找出下列各题错在哪里,并改正。

(1)25×16=25×(4×4)=(25×4)×(25×4);

(2)18×36+18×64=(18+18)×(36+64)

例5 .直接写出下列各题的得数:

(1)3.6+6.4 (2)3.6+6.04

(3)125×57×0.04 (4)(351-37-13)÷5

第二、科学观察。科学观察渗透了更多的理性因素,它是有目的,有计划地察看研究对象。比如,在教学长方体的认识时,要做到“有序”观察:(1)面——形状、个数、面与面之间的关系;(2)棱——棱的形成、条数、棱与棱之间的关系(相对的棱相等;相对的棱有四条;长方体的棱可以分为三组);(3)顶点——顶点的形成、个数,认识顶点的一个重要作用是引出长方体长、宽、高的概念。

第三, 观察必定与思考结合。

6、典型法

针对题目去联想已经解过的典型问题的解题规律,从而找出解题思路的方法叫做典型法。典型是相对于普遍而言的。解决数学问题,有些需要用一般方法,有些则需要用特殊(典型)方法。比如,归一、倍比和归总算法、行程、工程、消同求异、平均数等。

运用典型法必须注意:

(1)要掌握典型材料的关键及规律。

例7.已知爸爸比儿子大30岁,爸爸今年的年龄正好是儿子的7倍。爸爸、儿子今年分别是多少岁?关键点在:爸爸比儿子大30岁,爸爸的年龄比儿子多几倍。典型题都有典型解法,要想真正学好数学,即要理解和掌握一般思路和解法,还要学会典型解法。

(2)熟悉典型材料,并能敏捷地联想到所适用的典型,从而确定所需要的解题方法。

例8.见到“某城市有一条公共汽车线路,长16500米,平均每隔500米设一个车站。这条线路需要设多少个车站?”这样题目,就应该联想到上面所讲到的“锯木头用多少分钟”的典型问题。

(3)典型和技巧相联系。

例9.甲乙两个工程队共有82人,如果从乙队调8人到甲队,两队人数正好相等。甲乙两队原来各有多少人?这题目的技巧:调前、调后两队总人数没变。先算调后各队人数,再算原来各队人数。

7、放缩法

通过对被研究对象的放缩估计来解决问题的方法叫做放缩法。放缩法灵活、巧妙,但有赖于知识的拓展能力及其想象能力。

例16.求12和9的最小公倍数。

求两个数的最小公倍数一般的方法是“短除式”方法,它是根据这两个数的质因数情况来求出它们的最小公倍数的。但也有两个典型方法:一是“如果两个数是互质数,那么这两个数的最小公倍数就是它们的乘积”;二是“如果大数是小数的倍数,那么这两个数的最小公倍数就是大数”。现在我们根据典型方法二,进行扩展运用,放大“大数”来求12和9的最小公倍数。

12不是9的倍数,就把它放大2倍,得24,仍然不是9的倍数,放大3倍,得36,36是9的倍数,那么,12和9的最小公倍数就是36。这种方法的关键点在于,如果大数不是小数的倍数,就把大数翻倍,但一定从2倍开始,如果一下子扩大6倍,得数是它们的公倍数,而不是最小的了。

例17.期末考试,小刚的语文成绩和英语成绩的和是197分;语文和数学成绩加起来是199分;数学和英语成绩加起来是196分。想一想,小刚的哪科成绩最高?你能算出小刚的各科成绩吗?

思路一:“放大”。通过观察发现,语、数、外三科成绩在题目中各出现两次,我们求197+199+196的和,这个和是“语数外成绩的2倍”,除以2得三科成绩之和,再减去任意两科的成绩,就得到第三科的成绩。

思路二:“缩小”。我们用语数成绩的和减去语外的成绩,199-197=2(分),这是数学减英语成绩的差。数学和英语的和是196分,再求数学的分数就不难了。

放缩法有时运用在估算和验算上。

例18 .检验下列计算结果是否正确?

(1)18.7×6.9=137.3; (2)17485÷6.6=3609.

对于(1)用总体估计,放大至19×7=133,估计得数要小于133,所以本题结果错误。对于(2)用最高位估计,把17看作18,把6.6看作6,18÷6=3,显然答数的最高位不会是3,故本题结果也不正确。

例19.把鸡和兔放在一起,共有48个头,114只足,问鸡、兔各有几只。

这是一道鸡兔同笼的典型问题,我们也用放缩法,不妨把鸡和兔的足数缩小2倍,那么,鸡的足数和它的头数一样,而兔的足数是它的只数的2倍。所以,总的足数缩小2倍后,鸡和兔的总足数与它们的总只数相差数就是兔的只数。

8、验证法

你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质。

验证法应用范围比较广泛,是需要熟练掌握的一项基本功。应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯。

(1)用不同的方法验证。教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算。

(2)代入检验。解方程的结果正确吗?用代入法,看等号两边是否相等。还可以把结果当条件进行逆向推算。

(3)是否符合实际。“千教万教教人求真,千学万学学做真人”陶行知先生的话要落实在教学中。比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8(套)

按照“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去。教学中,常识性的东西予以重视。做衣服套数的近似计算要用“去尾法”。

(4)验证的动力在猜想和质疑。牛顿曾说过:“没有大胆的猜想,就做不出伟大的发现。”“猜”也是解决问题的一种重要策略。可以开拓学生的思维、激发“我要学”的愿望。为了避免瞎猜,一定 学会验证。验证猜测结果是否正确,是否符合要求。如不符合要求,及时调整猜想,直到解决问题。

二、抽象思维方法

运用概念、判断、推理来反映现实的思维过程,叫抽象思维,也叫逻辑思维。

抽象思维又分为:形式思维和辩证思维。客观现实有其相对稳定的一面,我们就可以采用形式思维的方式;客观存在也有其不断发展变化的一面,我们可以采用辩证思维的方式。形式思维是辩证思维的基础。

形式思维能力:分析、综合、比较、抽象、概括、判断、推理。

辩证思维能力:联系、发展变化、对立统一律、质量互变律、否定之否定律。

小学数学要培养学生初步的抽象思维能力,重点突出在:(1)思维品质上,应该具备思维的敏捷性、灵活性、联系性和创造性。(2)思维方法上,应该学会有条有理,有根有据地思考。(3)思维要求上,思路清晰,因果分明,言必有据,推理严密。(4)思维训练上,应该要求:正确地运用概念,恰当地下判断,合乎逻辑地推理。

9、对照法

如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。

例20.个连续自然数的和是18,则这三个自然数从小到大分别是多少?

对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。

例21.判断:能被2除尽的数一定是偶数。

这里要对照“除尽”和“偶数”这两个数学概念。只有这两个概念全理解了,才能做出正确判断。

10、公式法

运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

例22.计算59×37+12×59+59

59×37+12×59+59

=59×(37+12+1)…………运用乘法分配律

=59×50 …………运用加法计算法则

=(60-1) ×50 …………运用数的组成规则

=60×50-1×50 …………运用乘法分配律

=3000-50 …………运用乘法计算法则

=2950 …………运用减法计算法则

11.比较法

通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

比较法要注意:

(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

(2)找联系与区别,这是比较的实质。

(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。

(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。

(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。

例23.填空:0.75的最高位是( ),这个数小数部分的最高位是( );十分位的数4与十位上的数4相比,它们的( )

相同,( )不同,前者比后者小了( )。

这道题的意图就是要对“一个数的最高位和小数部分的最高位的区别”,还有“数位和数值”的区别等。

例24.六年级同学种一批树,如果每人种5棵,则剩下75棵树没有种;如果每人种7棵,则缺少15棵树苗。六年级有多少学生?

这是两种方案的比较。相同点是:六年级人数不变;相异点是:两种方案中的条件不一样。

找联系:每人种树棵数变化了,种树的总棵数也发生了变化。

找解决思路(方法):每人多种7-5=2(棵),那么,全班就多种了75+15=90(棵),全班人数为90÷2=45(人)。

12、分类法

俗语:物以类聚,人以群分。

根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。

分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。

例25.自然数按约数的个数来分,可分成几类?

答:可分为三类。(1)只有一个约数的数,它是一个单位数,只有一个数1;(2)有两个约数的,也叫质数,有无数个;(3)有三个约数的,也叫合数,也有无数个。

阅读全文

与简述常见的数学手段有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:736
乙酸乙酯化学式怎么算 浏览:1401
沈阳初中的数学是什么版本的 浏览:1347
华为手机家人共享如何查看地理位置 浏览:1039
一氧化碳还原氧化铝化学方程式怎么配平 浏览:881
数学c什么意思是什么意思是什么 浏览:1405
中考初中地理如何补 浏览:1296
360浏览器历史在哪里下载迅雷下载 浏览:698
数学奥数卡怎么办 浏览:1384
如何回答地理是什么 浏览:1020
win7如何删除电脑文件浏览历史 浏览:1052
大学物理实验干什么用的到 浏览:1481
二年级上册数学框框怎么填 浏览:1696
西安瑞禧生物科技有限公司怎么样 浏览:962
武大的分析化学怎么样 浏览:1244
ige电化学发光偏高怎么办 浏览:1334
学而思初中英语和语文怎么样 浏览:1647
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1483
数学中的棱的意思是什么 浏览:1054