导航:首页 > 数字科学 > 中国最高规格的高中数学竞赛有哪些

中国最高规格的高中数学竞赛有哪些

发布时间:2023-01-30 22:06:12

1. 高中数学竞赛一共有几种

全国高中数学联合竞赛、希望杯、中国西部数学奥林匹克竞赛、中国东南数学奥林匹克竞赛,中国女子数学奥林匹克竞赛,中国数学奥林匹克竞赛(冬令营)

2. 全国着名的奥数比赛有哪些

“奥数”这个词想来大家都不陌生。特别在城市中说妇孺皆知决不过分,即使是落后的小城市也不例外。今年暑假,就有一位同事自豪地说:“我的孩子进了某重点中学,是奥班。”(奥是奥数的奥)欣慰之情溢于言表。奥数之热可见一斑。

奥数全称叫“中学生国际奥林匹克数学竞赛”,一项开始于20年前的中学生学科竞赛。众所周知,20年前,我国的国际地位与声望决不能同今日相比,开放交流的程度也较低,对于中学生国际奥林匹克学科竞赛这项国际活动,国家教育行政部门给予高度关注,也可以理解。据我多年来的耳闻目睹,我国的中学生特别“争气”,特别是湖北某个以高考教辅资料着称的中学,更是让人满意,在竞赛知识以理论为主的数学、物理方面,参赛选手更是技压群雄,几乎包揽了每年的金牌,而在需要动手能力较强的化学方面虽欠佳,经过几年努力,也有了不俗的表现。这些成绩的确在增强民族自信心、提高中学生学习兴趣与动力方面起到了积极的作用,也向世人展示了我国基础教育的实力。
当然这些参赛获胜的选手,社会也给予了荣誉和优待。如免试入重点大学,所在学校也给予重奖,近几年更有企业请他们作产品代言人,赚取巨额广告收入。全社会都“尊重知识、尊重人才”,怀着各种目的来为竞赛加油助威。如此大的优惠条件与荣誉,也激发了广大莘莘学子学习数理化的热情。毋庸讳言,本人当年也作为选手参加了数学竞赛。获奖时刻历历在目,记忆犹新。这项活动对增进国际交流,提高学习热情,选拔学科优秀人才方面的确起到了积极的作用。但古语有云:“上有好之,下必甚之”。奥数经过二十年的发展,如今已在全国变得轰轰烈烈。甚至于小学生也加入其中,“小学奥数”也应运而生,并且辅导材料居然也细分到小学各年级。稍有教学常识的都应知道,广大小学生的数学教学大纲对小学数学的要求是什么。更为推波助澜的是,各个城市中拥有好的教育资源的学校招生,也将奥数成绩作为一个重要的评价标准,所以好的成绩将意味着一大笔择校费,社会、教师、家庭的赞许。在当前我国的教育现状下,因各个学校教育力量差别较大,学生选择学校、学校选择学生问题突出,恐怕一下子难以解决,而奥数成绩作为一个客观的,让社会各方接受的评价学生优劣的标准,也将越来越引起各方的关注。

正是以上的“本质”原因,决定了奥数热度近期内不能降低。可以说,奥数热很大的原因是煤体的想出新闻的“热捧”,教育部门为了功利目的而不作为,广大家长“望子成龙”迫切心理和对教育规律的无知、孩子怎样才算成才的错误认识,几方面的综合结果。的但奥数本身是否能培养出来真正的科学家,对学生的知识结构建立有多大裨益呢?

在此,我自不量力,以自己的浅薄之见对数学发表一下看法。数学对普通人的印象是,枯燥,抽象,难以理解,但若对数学作深入的研究,具备一定的近代数学知识,了解一点数学史,你就会对数学有了正确的认识。首先我强调一点,所有数学知识皆来源于生活实践,是前人对生活中遇到的问题、其他学科发展中提出的问题,以及给出的解决方法,作了一个抽象与概括。可以说,数学与其他学科密不可分。脱离了生活与其他学科,数学研究终将成为无本之木,无源之水,也就失去了其存在的价值。如果你对古代哲学家、科学家如苏格拉底、牛顿、莱布尼兹、马克思、黑格尔等有所了解,就会发现他们同时也是数学家。

回顾数学史,数学的发展分三个阶段。第一阶段是16世纪西方文艺复兴、工业革命以前,称为古典数学。我们高中以前所学的知识,都在这个范围内。第二阶段是文艺复兴之后,随着机械化社会的到来,才出现了微积分这一近代数学研究的基础。学过高等数学的人都知道,在工业社会以前的社会环境下,封建经济相对闭塞,没有社会的需求,很难有微积分思想产生的环境。由此可见,数学的发展是随着社会经济的进步而发展的。一个纯粹的数学家,而没有其他社会知识与相关学科的补充与辅助,是很难让数学发展并产生质的飞跃。可以说数学研究决不是象奥数比赛一样解决固有知识框架下提出的问题,更需要一种提出问题、解决问题的创新精神。而这恰恰和奥数竞赛的思维方式相反。第三阶段,现代数学的兴起,则起缘于19世纪末电磁学,热力学,信息技术的研究,工业的发达,世界大战的爆发等诸多因素。同时,数学研究的中心慢慢地从欧洲转移到美国,美国也逐渐成为世界强国。没有其他学科的相辅相成,孤立地研究只能将数学引入歧途或毫无价值。

再看一下我们的奥数到底有什么内容。据数学大师的推断,我国奥数竞赛的出题者,决非一流的数学家。因为题目并不涉及近代数学即微积分的内容,全部是古典数学的问题,我狂妄推测,这些绞尽脑汁的出题者恐怕连基本的近代数学思想也不具备。有些奥数辅导的教师也未接受过系统的高等数学教育,否则,他决不会如此不遗余力地带领孩子们在牛角尖的问题中转来转去,耗费孩子们的美好童年与青春,让孩子们的知识面过于狭窄,把数学过于模式化。因为孩子的健康成长,需要多方面的知识储备,而接受新知识的精力和时间又有限。创新的思想,合作的意识,挑战权威的勇气,正确处理周围的人际关系,人生的定位,青春期对这些的品性的建立犹为重要。这些优秀的品质对孩子的健康发展更重要,而这些品质决非单一的奥数成绩所能体现,也非单一的奥数训练所能给予。大部分奥数学习者也并非自身对数学感兴趣,只是为了解题而解题,为了一个好成绩,以便进入一个好学校。

同时,奥数内容也严重违背了数学普及教育的规律。据我所知,小学奥数需要初中的知识来解决,而初中的需要高中的知识来解决,高中的则需要大学的知识更方便。一般规律是,奥数给出的解决方法相当繁琐,是用低级的知识来解决高一级的问题,同一问题用高一级知识来解决则相当简单。但奥数教师们是“不屑”的,因为那看起来不够复杂,不足以锻炼人的思维。(他们不知道数学的发展方向就是要用相对简单的方法来解决复杂的问题)举一个简单的例子,一道小学奥数题,若用中学的知识,多设几个未知数,联立方程组,解起来相当简单,而奥数的方法则是尽量不设或减少未知数,完全靠自己把题目的关系弄清楚,难度可想而知。殊不知这样会扼杀了小学生学习新知识的兴趣。而兴趣却是研究数学的必备条件。打个不恰当的比喻,解奥数好比让人在地上挖沟。人可以用手挖,用铁锹挖更方便,若使用挖掘机,则挖沟对人来说就是一种享受。而这三个阶段,好比是小学生,中学生、大学生来解决同一奥数问题。让人徒手挖沟固然锻炼了学生的毅力与韧性,且真用手挖一条深沟也是奇迹,值得啧啧称赞,但若学生知道了挖沟可以用挖掘机而不仅仅是用手,不知学生要作如何感想。手和挖掘机不具有可比性,奥数有好成绩决不代表其具有研究数学的能力与兴趣

下面我们不妨再看一下大师们对奥数的态度。近几年,代表我国数学研究水平的人物、陈省身教授,晚年在南开大学散步时,经常有学生拿着奥数问题前来请教,而陈教授的回答是:我不会做。我想其决不是不会,而是不屑。另一位是丘成桐,美国科学院院士,当今世界唯一获得数学界最高奖“菲尔兹奖”的华人,也对如今全社会给予奥数如此高的投入与关注感到忧虑。又举例说,随着他本人做数学研究的奥数选手并不具有正确的研究方法与思想,还需要耗费大量的精力来改变学生的习惯。另一个极端的例子,一个年轻的数学“天才”, 12岁上大学,20岁拿了博士,后来跟着丘成桐做博士后。也正因为他是一个天才,从小没人与他交往,他没有自己的朋友。不到两年,他发疯了。20岁已是博士,跟着他作了一段研究,却自杀了,这不能说我们的教育没有问题。国外也有奥数比赛,但不象中国这样投入如此多的精力与时间,选手们只是在假期中因兴趣而共同探讨,且奥数成绩也决不是进入美国一流大学的凭证,倒是美国的三流大学重视这个成绩。前几天还看到文章说:北京市副市长范伯元在广播电台对奥数作评论:奥数是一种无聊的比赛,简直是在毁孩子们的前途……

我想,要搞清奥数比赛对于孩子们的终身发展及民族未来,到底是利大于弊,还是弊大于利,还要听取各方面的意见,特别是数学研究有所成就者与教育界资深人士的意见。个人认为,目前全社会关注奥数、使奥数过热的现状,恐怕是弊大于利。

3. 高中有哪些数学竞赛

高中数学竞赛大纲(2006年修订试用稿)

中国数学会普及工作委员会制定

(2006年8月第14次全国数学普及工作会议讨论通过)

从1981年中国数学会普及工作委员会举办全国高中数学联赛以来,在“普及的基础上不断提高”的方针指引下,全国数学竞赛活动方兴未艾,每年一次的竞赛活动吸引了广大青少年学生参加。1985年我国又步入国际数学奥林匹克殿堂,加强了数学课外教育的国际交流,20年来我国已跻身于国际数学奥林匹克强国之列。数学竞赛活动对于开发学生智力、开拓视野、促进教学改革、提高教学水平、发现和培养数学人才都有着积极的作用。这项活动也激励着广大青少年学习数学的兴趣,吸引他们去进行积极的探索,不断培养和提高他们的创造性思维能力。数学竞赛的教育功能显示出这项活动已成为中学数学教育的一个重要组成部分。

为了使全国数学竞赛活动持久、健康地发展,中国数学会普及工作委员会于1994年制定了《高中数学竞赛大纲》。这份大纲的制定对高中数学竞赛活动的开展起到了很好的指导作用,使我国高中数学竞赛活动日趋规范化和正规化。

近年来,课程改革的实践,在一定程度上改变了我国中学数学课程的体系、

内容和要求。同时,随着国内外数学竞赛活动的发展,对竞赛试题所涉及的知识、思想和方法等方面也有了一些新的要求。为了使新的《高中数学竞赛大纲》能够更好地适应高中数学教育形势的发展和要求,经过广泛征求意见和多次讨论,中国数学会普及工作委员会组织了对《高中数学竞赛大纲》的修订。

本大纲是在教育部2000年《全日制普通高级中学数学教学大纲》的精神和基础上制定的。该教学大纲指出:“要促进每一个学生的发展,既要为所有的学生打好共同基础,也要注意发展学生的个性和特长;……在课内外教学中宜从学生的实际出发,兼顾学习有困难和学有余力的学生,通过多种途径和方法,满足他们的学习需求,发展他们的数学才能。”

学生的数学学习活动应当是一个生动活泼、富有个性的过程,不应只限于接受、记忆、模仿和练习,还应倡导阅读自学、自主探索、动手实践、合作交流等学习数学的方式,这些方式有助于发挥学生学习的主动性。教师要根据学生的不同基础、不同水平、不同兴趣和发展方向给予具体的指导。教师应引导学生主动地从事数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学的思想和方法,获得广泛的数学活动经验。对于学有余力并对数学有浓厚兴趣的学生,教师要为他们设置一些选学内容,提供足够的材料,指导他们阅读,发展他们的数学才能。

教育部2000年《全日制普通高级中学数学教学大纲》中所列出的内容,是教学的要求,也是竞赛的基本要求。在竞赛中对同样的知识内容,在理解程度、灵活运用能力以及方法与技巧掌握的熟练程度等方面有更高的要求。“课堂教学为主,课外活动为辅”也是应遵循的原则。因此,本大纲所列的内容充分考虑到学生的实际情况,旨在使不同程度的学生都能在数学上得到相应的发展,同时注重贯彻“少而精”的原则。

全国高中数学联赛

全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制

普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试

全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所

扩展;适当增加一些教学大纲之外的内容,所增加的内容是:

1.平面几何

几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数

周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*

3.初等数论

同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理。,孙子定理*。

4. 组合问题

圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考!

4. 高中都有那些数学竞赛怎么报名

全国中学生数学联赛(高联)、中国数学生数学奥林匹克(就是CMO,高联中成绩优异的前几名或者数十名一等奖选手作为省队可以参加,不同省市名额还不一样),最后是IMO国际数学奥林匹克,不过这个得在前两个比赛中取得非常优异的成绩才可以。报名的话由学校为单位报名。

数学竞赛是发现数学人才的有效手段之一。现代意义上的数学竞赛是从匈牙利开始的。一些重大数学竞赛的优胜者,大多在他们后来的事业中卓有建树。

因此,世界发达国家都十分重视数学竞赛活动。十余年来,我国中学数学竞赛活动蓬勃发展,其影响越来越大,特别是我国中学生在影响最大、水平最高的国际数学奥林匹克竞赛中,多次荣登榜首,成绩令世人瞩目,充分显示了中华民族的聪明才智和数学才能。

了解熟悉国内赛况,对于想通过数学竞赛来发挥自己的才智是必要的,也是有益的。

数学竞赛与竞赛数学的区别与联系

竞赛数学是一门学科的延伸。数学竞赛是一项活动的举行。 竞赛数学是奥数的标准书面用语,奥数是奥林匹克数学的简称,泛指数学难题,奥林匹克数学是个奥林匹克运动得名,科学标准的说法应该叫竞赛数学。

由于竞赛数学是伴随着数学竞赛而产生的,因此,谈到竞赛数学的产生我们先要探究一下数学竞赛。

1,数学竞赛的简史

数学竞赛与体育竞赛相类似,它是青少年的一种智力竞赛,所以苏联人首创了"数学奥林匹克"这个名词。在类似的以基础科学为竞赛内容的智力竞赛中,数学竞赛历史悠久,参赛国多,影响也最大。

比较正规的数学竞赛是1894年在匈牙利开始的,除因两次世界大战及1956年事件而停止了7届外,迄今已举行过90多届。苏联的数学竞赛开始于1934年,美国的数学竞赛则是1938年开始的。

这两个国家除第二次世界大战期间各停止了3年外,均己举行过50多届,其他有长久数学竞赛历史的国家是罗马尼亚(始于1902年)、保加利亚(始于1949年)和中国(始于1956年)。

2,数学竞赛的发展

数学竞赛活动是由个别城市,向整个国家,再向全世界逐步发展起来的。例如苏联的数学竞赛就是先从列宁格勒和莫斯科开始,至1962年拓展至全国的,美国则是到1957年才有全国性的数学竞赛的。

数学竞赛活动也是由浅入深逐步发展的。

几乎每个国家的数学竞赛活动都是先由一些着名数学家出面提倡组织,试题与中学课本中的习题很接近,然后逐渐深入,并有一些数学家花比较多的精力从事选题及竞赛组织工作,这时的试题逐渐脱离中学课本范围,当然仍要求用初等数学语言陈述试题并可以用初等数学方法求解。

例如苏联数学竞赛之初,着名数学家柯尔莫哥洛夫、亚历山大洛夫、狄隆涅等都参与过这一工作。在美国,则有着名数学家伯克霍夫父子、波利亚、卡普兰斯基等参与过这项工作。

国际数学奥林匹克开始举办后,参赛各国的备赛工作往往主要是对选手进行一次强化培训,以拓广他们的知识,提高他们的解题能力。这种培训课程是很难的,比中学数学深了很多。这时就需要少数数学家专门从事这项活动。

“竞赛数学”是随着数学教育课程的发展而产生的一门新课程。课程涉及数学竞赛的内容、思想和方法;也涉及到数学竞赛教育和数学课外教育的本质、方法、规律和途径的问题;课外学习与课堂学习的关系问题;辅导教师的进修和提高的问题。

课程以数学竞赛所涉及的主要内容:数论、代数、几何及组合数学为载体,尤其注重数学思想和方法的探究,以提高学生的数学素养为目标。

竞赛数学又不同于上述这些数学领域。通常数学往往追求证明一些概括广泛的定理,而竞赛数学恰恰寻求一些特殊的问题,通常数学追求建立一般的理论和方法,而竞赛数学则追求用特殊方法来解决特殊问题;而且一旦某个问题面世,即成为陈题,又需继续创造新的问题。

竞赛数学属于"硬"数学范畴,它通常也与纯粹数学一样,以其内在美,包括问题的简练和解法的巧妙,作为衡量其价值的重要标准。

竞赛数学不能脱离现有数学分支而独立发展,否则就成了无源之水,所以它往往由某些领域的专家兼稿,如参加国际数学奥林匹克的中国代表团的出色教练单樽,就是一位数论专家。

5. 数学有哪些竞赛

小学:

“全国小学数学奥林匹克”(中国数学会普及工作委员会)

全国小学“希望杯”数学邀请赛(中国科学技术协会普及部,中国优选法统筹法与经济数学研究会,华罗庚实验室,《数理天地》杂志社,《中青在线》网站)

小学“我爱数学”夏令营--“全国小学数学奥林匹克”的总决赛(中国数学会普及工作委员会)

全国“华罗庚金杯”少年数学邀请赛--小学(中国少年儿童新闻出版总社、中国优选法统筹法与经济数学研究会、中央电视台青少中心、华罗庚实验室、中华国际科学交流基金会等)

初中:

“全国初中数学联赛”(中国数学会普及工作委员会)

“全国初中数学竞赛”(中国教育学会中学数学教学专业委员会)

初中“我爱数学”夏令营--“全国初中数学联赛”的总决赛(中国数学会普及工作委员会)

全国初中“学用杯”数学知识应用竞赛(中国教育学会数学教育研究发展中心与少年智力开发报·数学专页)

全国初中“希望杯”数学邀请赛(中国科学技术协会普及部,中国优选法统筹法与经济数学研究会,华罗庚实验室)

全国“华罗庚金杯”少年数学邀请赛--初中(中国少年儿童新闻出版总社、中国优选法统筹法与经济数学研究会、中央电视台青少年中心、华罗庚实验室、中华国际科学交流基金会等)

“五羊杯”初中数学竞赛(《中学数学研究》杂志社)

高中:

“全国高中数学联赛”(中国数学会普及工作委员会)

中国数学奥林匹克--冬令营(中国数学会普及工作委员会、中国数学会奥林匹克委员会)

全国高中“学用杯”数学知识应用竞赛(中国教育学会数学教育研究发展中心与少年智力开发报·数学专页)

全国高中“希望杯”数学邀请赛(中国科学技术协会普及部,中国优选法统筹法与经济数学研究会,华罗庚实验室)。

女子数学奥林匹克(中国数学会奥林匹克委员会)

西部数学奥林匹克(中国数学会奥林匹克委员会)

东南数学奥林匹克(中国数学会奥林匹克委员会、闽浙赣数学奥林匹克协作体)

北方数学奥林匹克(中国数学会奥林匹克委员会)

那么,如果国内的数学竞赛队员,想参加国际数学奥林匹克竞赛(IMO),该如何实现这个梦想呢?

一般情况下,国家相关主管部门会组织各级各类的数学竞赛(如上面提到各种竞赛),一开始先在各个学校里初选,继而在县(区)、市级、省级层层选拔,最后在全国进行考试选拔。

如果一个人最终能从国家级竞赛考试中脱颖而出,获得优秀的成绩,那么这样的人才就有机会参加最高一层的国际数学奥林匹克(IMO)。

因此,我们可以把每一个国家内的数学竞赛看成是国际数学奥林匹克(IMO)的选拔考试,任何一个学习数学爱好者或数学竞赛队员都以能参加IMO为荣,而能获得奖杯的队员,回国之后自然会受到重点培养。

基于这样的背景,前些年很多教育培训机构打着“奥数”的招牌进行招生,扰乱了正常的数学竞赛选拔程序,特别是一些学校为了升学利益和名誉,以“奥数”作为参考成绩,更是让数学竞赛朝着畸形的方向发展。

6. 全国高中的竞赛有哪些

我比较功利啦,正好整理过高考能加分的一些竞赛
学科、科技类
全国中学生学科奥林匹克竞赛全国决赛一、二、三等奖或省赛区一等奖、上海市中小学信息科技竞赛(程序设计)一等奖、上海市青少年“金钥匙”科技竞赛一等奖、上海市青少年发明创造比赛(“明日科技之星”评选),获以上奖项的高三学生,高考加20分。
其中的全国中学生学科奥林匹克竞赛全国决赛,包括中国数学奥林匹克、全国中学生物理竞赛、全国高中学生化学竞赛、全国青少年信息学奥林匹克竞赛、全国中学生生物学竞赛;全国中学生学科奥林匹克竞赛省赛区竞赛,包括全国高中数学联赛、全国中学生物理竞赛、全国高中学生化学竞赛、全国青少年信息学奥林匹克联赛、全国中学生生物学联赛。
上海市“海文杯”高三英语竞赛、高三数学竞赛、“东华杯”高三化学竞赛、“西部集团杯”计算机应用操作竞赛、中学生科普英语竞赛、“白猫杯”应用化学与技能竞赛、中学生数学知识应用竞赛、“上师杯”青少年物理实验竞赛,在上述比赛中获一等奖的高三学生,高考加10分。
艺术、体育类
上海市学生艺术团重点团队的优秀团员,加10分;一般团队的优秀团员,加5分。全国及上海市文艺竞赛个人一等奖或前三名(需赛前经市教委认定加分项目),2009年认定项目为上海市学生绘画书法作品展,获一等奖的高三学生,可加10分。
高中阶段获得国家一级运动员称号的考生和参加重大国际体育比赛、全国运动会、全国中学生运动会、世界中学生体育比赛选拔赛获前六名以及参加上述比赛获得国家二级运动员称号的考生,经省级教育考试院组织的全省(市、区)统一认定,可加20分。

阅读全文

与中国最高规格的高中数学竞赛有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:736
乙酸乙酯化学式怎么算 浏览:1401
沈阳初中的数学是什么版本的 浏览:1347
华为手机家人共享如何查看地理位置 浏览:1039
一氧化碳还原氧化铝化学方程式怎么配平 浏览:881
数学c什么意思是什么意思是什么 浏览:1405
中考初中地理如何补 浏览:1296
360浏览器历史在哪里下载迅雷下载 浏览:698
数学奥数卡怎么办 浏览:1384
如何回答地理是什么 浏览:1020
win7如何删除电脑文件浏览历史 浏览:1052
大学物理实验干什么用的到 浏览:1481
二年级上册数学框框怎么填 浏览:1696
西安瑞禧生物科技有限公司怎么样 浏览:962
武大的分析化学怎么样 浏览:1244
ige电化学发光偏高怎么办 浏览:1334
学而思初中英语和语文怎么样 浏览:1647
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1483
数学中的棱的意思是什么 浏览:1054