㈠ 人教版小学六年级下册数学广角
.例1。
编写意图
教材借助把4枝铅笔放进3个文具盒中的操作情境,介绍了一类较简单的“抽屉问题”。学生在操作实物的过程中可以发现一个现象:不管怎么放,总有一个文具盒里至少放进2枝铅笔,从而产生疑问,激起寻求答案的欲望。在这里,“4枝铅笔”就是“4个要分放的物体”,“3个文具盒”就是“3个抽屉”,这个问题用“抽屉问题”的语言来描述就是:把4个物体放进3个抽屉,总有一个抽屉至少有2个物体。
为了解释这一现象,教材呈现了两种思考方法。第一种方法是用操作的方法进行枚举。通过直观地摆铅笔,发现把4枝铅笔分配到3个文具盒中一共只有四种情况(在这里,只考虑存在性问题,即把4枝铅笔不管放进哪个文具盒,都视为同一种情况)。在每一种情况中,都一定有一个文具盒中至少有2枝铅笔。通过罗列实验的所有结果,就可以解释前面提出的疑问。实际上,从数的分解的角度来说,这种方法相当于把4分解成三个数,共有四种情况,即(4,0,0),(3,1,0),(2,2,0),(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。第二种方法采用的是“反证法”或“假设法”的思路,即假设先在每个文具盒中放1枝铅笔,3个文具盒里就放了3枝铅笔。还剩下1枝,放入任意一个文具盒,那么这个文具盒中就有2枝铅笔了。这种方法比第一种方法更为抽象,更具一般性。例如,如果要回答“为什么把(n
+1)枝铅笔放进
n个文具盒,总有一个文具盒里至少放进2枝铅笔”的问题,用枚举的方法就很难解释,但用“假设法”来说明就很容易了。
为了对这类“抽屉问题”有更深的理解,教材在“做一做”中安排了一个“鸽巢问题”。学生可以利用例题中的方法迁移类推,加以解释。
教学建议
由于例题中的数据较小,为学生自主探索提供了很大的空间。因此,教学时,可以放手让学生自主思考,先采用自己的方法进行“证明”,然后再进行交流。除了教材上提供的两种方法以外,还会有其他的方法(如数的分解法),只要是合理的,都应给予鼓励。在此过程中,教师也应给予适当的指导。例如,要使学生明确,这里只需解决存在性问题就可以了。如果有的同学在枚举的时候,给三个文具盒标上序号,把(4,0,0)、(0,4,0)和(0,0,4)理解成三种不同的情况,教师应指出,在研究这一类问题时,作这样的区分是没有必要的。这样的指导有助于培养学生具体情况具体分析的数学思维。
教学时应有意识地让学生理解“抽屉问题”的“一般化模型”。教学时,在学生自主探索的基础上,可以引导他们对教材上提供的两种方法进行比较,思考一下枚举的方法有什么优越性和局限性,假设的方法有什么优点,使学生逐步学会运用一般性的数学方法来思考问题。学生在解决了“4枝铅笔放进3个文具盒”的问题以后,可以让学生继续思考:把5枝铅笔放进4个文具盒,总有一个文具盒里至少放进2枝铅笔,为什么?如果把6枝铅笔放进5个文具盒,结果是否一样呢?把7枝铅笔放进6个文具盒呢?把10枝铅笔放进9个文具盒呢?把100枝铅笔放进99个文具盒呢?引导学生得出一般性的结论:只要放的铅笔数比文具盒的数量多1,总有一个文具盒里至少放进2枝铅笔。接着,可以继续提问:如果要放的铅笔数比文具盒的数量多2,多3,多4呢?引导学生发现:只要铅笔数比文具盒的数量多,这个结论都是成立的。通过这样的教学过程,有助于发展学生的类推能力,形成比较抽象的数学思维。
2.例2。
编写意图
本例介绍了另一种类型的“抽屉问题”,即“把多于
kn个的物体任意分放进n
个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少(k+1)个物体。”实际上,如果设定
k=1,这类“抽屉问题”就变成了例1的形式。因此,这两类“抽屉问题”在本质上是一致的,例1只是例2的一个特例。
㈡ 小学数学教学中如何处理数学广角
把握目标 突出主体 有效提升
——浅谈《数学广角》的教学
[摘要]数学广角教学的关键是对学生进行数学思想方法的渗透,目的是培养学生的思维及解决实际问题的能力。在教学中把握准教学目标,注重学生的主动建构,注重学生的自主探索,注重学生的交流讨论,让学生经历数学知识的形成过程,突出主体,巧用素材,有效提升,为学生的终身发展奠定基础。
[关键词] 目标 主体 提升
“数学广角”是人教版小学数学实验教材新增加的板块,这块新内容许多执教教师都感到比较迷茫,迷茫于编者的意图,迷茫于教学目标的把握,迷茫于教学方法的选择,迷茫于内容的处理,迷茫于过程的展开,迷茫于……。再加上从总体上来说,《数学广角》的内容不列入期末考试的范畴,所以有的教师就蜻蜓点水,一带而过,有的教师又因为学校要进行竞赛,又上成奥数课。《数学广角》究竟如何去教学呢?
一、恰当要求,把握目标
教学目标是课堂教学的灵魂,它既是教学的出发点,又是教学的归宿。因此,教学目标的制定是否恰当,直接决定着教学过程中目标的达成度,也将直接决定一堂课的教学效果。教参上也说每一册数学广角单元的安排,主要都是通过简单的事例渗透一些重要的数学思想方法,或者介绍一些比较着名的数学问题,让学生在解决这些问题的过程中能主动尝试从数学的角度运用所学知识和方法寻找解决问题的策略,培养学生解决实际问题的实践经验和能力。最重要的目的是让学生通过接触这些重要的数学思想方法,经历猜想、实验、推理等数学探索的过程,激发学生对数学的好奇心和求知欲,增强学生学习数学的兴趣。根据这一些,我们既不能拔高要求,脱离轨道,也不能降低要求,敷衍了事。
在一次乡镇一级教研活动中,有一位教师在教学二上的排列组合时,她是这样教学的:先通过老师与一个学生的握手,需要握一次;然后小组合作,试一试3人要握几次,通过老师的引导得出3个人握手的次数可以用算式2+1=3来计算,4个人的握手先通过小组合作,在指名上来表演,又得出可以用算式3+2+1=6表示;5个人呢,引导学生可以用自己喜欢的数字、图形、字母等表示人,再用连线表示握手的次数,又得出5个人的握手可以用4+3+2+1=10表示;接下来通过找规律得出6个人的握手次数是5+4+3+2+1=15,并进行了验证;根据这样的规律,那7个人、8个人、全班呢?通过引导,学生列出了相应的式子。最后老师总结:今天学的就是《握手中的数学问题》。她这节课把教学目标定为让学生通过观察、操作、讨论等活动,建立握手中的数学问题的模型,然后运用这个模型来应用。这样的目标和教学设计就拔高了教学要求,因为本节课是二年级上册的内容,学生第一次接触数学广角,这部分内容本身对于低年级学生来说就比较抽象,不应该象上面那样上成握手中的数学问题,使课堂只成为尖子生的课堂,所以这节课的目标应定为:使学生通过观察、猜测、比较、实验等活动,找出最简单事物的排列数和组合数;初步培养学生有顺序地、全面地思考问题的意识;使学生感受数学与生活的密切联系,激发学生学习探索数学的浓厚兴趣。根据这个目标,可以把教学设计改为:把各项教学内容全部贯穿于一个游戏活动当中,把摆数、握手、搭配衣服、打乒乓球,买练习本等学习内容贯穿整节课,使教材在呈现方式上变得生动、有趣,并富有浓浓生活气息;在内容上也有较强的层次性和逻辑性,使学生感到学数学就好像是在做游戏,增强了全班学生的参与意识,提高了学生学习的积极性,较好地完成教学目标。
二、突出主体,体现价值
1、关注学习过程,突出思想方法
数学广角体现了新课程的一种理念“重要的思想方法的渗透”,在渗透的过程中,切忌片面强调机械记忆、模仿以及复杂技巧。例如在教学三上的排列组合时,有的教师创设了搭配穿衣服的情境后,透过小组讨论、演示搭配过程、以及简单的连线方法后,老师就会问:“有没有更简单的方法?”如果学生还没有列出算式来,老师还会问:“上装的件数和下装的件数,与有多少种搭配方法有什么关系?”迫使学生得出计算的方法,才肯罢休,继续下面的环节。不难看出,这样较快地提炼方法,会使学习成为结果的记忆和套用,知识发生和发展过程中宝贵的教育资源就不能被充分开发利用,这样只关注结果的教学,哪有学生的主体地位?
有一位教研员他是这样设计的,同样创设了搭配衣服的数学情境,提问:“到底有多少中不同的搭配方法呢?你有什么好方法让大家清楚地知道你的种数呢?”接下来,请学生介绍,并引导评价,体验有序思考的好处,然后再提问:“用什么方法巧妙地纪录搭配的结果,比一比,谁的方法又对又快又清楚?”学生尝试用符号来表达自己的想法,有的用文字表示,有的用图形表示,有的用数字表示,有的用字母表示,还有的用算式表示……“它们有什么共同的特点?”“有序!”这样学生有顺序地、全面地思考问题的意识得到了加强,落实课程标准中提出的要求──“在解决问题的过程中,使学生能进行简单的、有条理的思考”。同时,学生通过用图片摆到抽象化的符号,其思考过程经历了从实物到抽象的过程,学生数学化的思考过程也非常明显,教学中教师并不急于提炼方法、得出结论,而是用较重的笔墨充分展开过程,这样重在渗透思想方法,落实数学思考,关注学习过程的教学方法是数学广角教学的首选。
2、夯实学习基础,促进方法渗透
数学广角的教学,不但要渗透数学的思想方法,还要使学生会用这些思想方法解决一些简单的实际生活问题和数学问题,从而培养学生解决生活中实际问题的能力。上一学期,我对四下的《植树问题》这一课进行认真地备课:既考虑到情境的创设如何培养学生的兴趣,贴近学生的生活;也考虑到教学时如何以学生为主体,渗透方法,自主建构。可是在实际的教学过程中,在“种树”时还是跃跃欲试的学生们到“应用规律” 时一个个都像在猜谜,加1?减1?还是不加不减?勉强参与的只是那几个在校外学奥数的学生。看来这样的设计无法顾及全体学生的发展,没有了学生的主体参与,还体现什么价值?反思整节课:因为课前没有较好地了解学生的学习起点,小组合作也只停留在表面,急于得出植树问题的三种情况,这样只重结果,学生似懂非懂,又怎么去应用规律呢?在反思中,我找到了症结,改变了原来的教学设计,首先创设情境后先独立思考,再让学生在小组内充分讨论,有的学生画草图、有的学生画线段图、还有的学生直接列算式,然后我采用反问的形式以及课件的巧妙演示,数形结合,渗透数学学习方法,给学生提供多次体验的机会,让学生有夯实的学习基础,有效地促进数学思想方法的渗透,这样为下面的解决实际问题提供了一根将“发现规律”与“运用规律”链接起来的拐杖,使学生永远站在主体的位置。
三、巧用素材,有效提升
练习在数学教学中占有特殊地位,是课堂教学的重要环节。数学广角的巩固练习创设了许多现实的、学生感兴趣的情境作为学习的素材。有的教师如果是平时上课他会按教材一题一题讲解,不考虑素材安排的目的;如果是上公开课,因为数学广角的练习题量也不多,他又会自己创设出好多的素材来巩固,究竟如何去巧用素材,使数学知识有效提升呢?
例如三上的《组合》这一课,教材上安排了组数、早餐搭配、走路中的数学问题、拍照等,这些丰富有趣的情境牢牢的吸引着学生,如果在教学时只是让学生“用数字卡片摆一摆”、“用线在书上连一连饮料与点心的搭配”、“自己用笔画一画从儿童乐园到百鸟园的路线”或“用线连一连一共拍了几张照片”,这些问题情境的设计与展开是平面的,除了情境的不同,要求上并没有提升,始终停留于具体操作层面,缺少数学化的过程。所以我们在教学时要注意每一个问题情境应有目标重心,组数问题要突出“有序思考”,把点心搭配从“二三搭配”拓展为“三三搭配”,既是对前面思想方法的巩固应用,又能起到举一反三的作用,游玩路线问题则侧重于“符号思想”的应用,让学生思考“如何可以更清楚地表达路线”,拍照问题则可以拓展为如果我们全班同学每个人都想单独和聪聪、明明各合一张影,一共要照多少张?只有这样发挥教材的编排作用,挖掘每个素材的独特功能,才能使学生的各种技能有效提升。
总之,数学广角的教学要体现“以学生为本”,突出主体,把握准目标,让学生经历数学知识的形成过程,把数学思想方法贯穿始终,体现数学的价值,增强应用数学的意识,为学生的终身发展奠定基础。
让我们每一位教师都在数学广角这一画卷上描上最美丽的一笔。
㈢ 新人教版 三年级下册 数学广角 用0,1,3,5能组成多少个没有重复 教学设计
新人教版三年级下册数学《初步感受简单事物的排列数》教案教学设计
第八单元 数学广角——搭配(二)
新知识点:
1、简单事物的排列数。
2、简单事物的组合数。
教学要求:
1、联系学生的生活实际,使学生通过观察、猜测、试验等活动,找出简单事物的排列数和组合数。
2、培养学生初步的观察、分析及推理能力,以及有顺序地、全面地思考问题的意识。
3、使学生感受数学在现实生活中的广泛应用,尝试用数学的方法解决实际生活中的问题。
4、渗透数学思想和方法,提高学生的数学素质。
5、使学生在数学活动中养成与人合作的良好习惯,并初步学会表达解决问题的大致过程和结果。
教学建议:
“数学广角—搭配(二)“主要是向学生介绍简单的排列、组合知识,培养学生的数学思想和方法,使学生感受到数学知识在实际生活中的应用价值。排列与组合不仅是组合数学的最初步知识和学习概率统计的基础,而且也是日常生活中应用比较广泛的数学知识。因而在教学中要多注意抓住并把握好适合学生发展的有利素材。
1、选用学生身边的事例和一些生动有趣的活动,来调动学生参与数学的积极性和主动性。例如儿童节到了,穿什么衣服,有几种搭配方法,如何选择游览的路线等等。
2、注重学习方式的教学,培养学生的数学素质。本单元的内容活动性和操作性较强,要尽可能的采取学生动手实践,小组合作学习的方式进行教学,如排出不同的三位数,比赛场次问题等,让学生根据实际问题采用——列举、连线等方法感受简单事物的排列数与组合数。
3、注意数学思想和方法的渗透,培养学生的能力。每种活动结束后,要让学生发表自己的看法,初步培养学生有序、全面思考问题的意识。例如在活动前质疑:怎样才能保证不重不漏?
4、注意教学语言的表述,把握好教学目标。教学时要尽量避免出现排列、组合这些术语,以免影响学生的思维。用学生能接受的语言表达、交流即可,使学生感受简单事物的排列数和组合数在实际生活中的广泛应用。
第一课时 初步感受简单事物的排列数
课题 初步感受简单事物的排列数 课型 新课
教学目标 1、使学生通过动手操作找出简单事物的排列数,体会数学思想和方法。
2、培养学生初步的观察、分析、推理能力,以及有顺序地、全面地思考问题的意识。
3、培养学生对数学的兴趣记忆与人合作的良好习惯。
教学重点 使学生找到简单事物的排列数,体会书写思想和方法。
教学难点 使学生找到简单事物的排列数,体会书写思想和方法。
教具准备 数字卡片。
教
学
过
程 教学设计 教 学 反 思
一、 学前准备
1、十位上是“2“的两位数共有多少个?
2、个位上是“0“的两位数共有多少个?
3、拿出准备好的数字卡片7、3、9.
二、探究新知
1、用0、1、3、5能组成多少个没有重复数字的两位数?
以小组为单位,合作完成,同时思考下面的问题。
(1)怎样摆能保证不重不漏?
(2)你们一共摆出了几个两位数?是怎样摆的?
(3)用什么方法记录既清楚明了又不重不漏?
2、学生以小组为单位探究,教师巡视、指导。
3、汇报:
(1)按照一定的顺序来摆就能保证不重不漏。
(2)按数位摆:
十位如果是1,可以摆出10、13、15;
十位如果是3,可以摆出30、31、35;
十位如果是5,可以摆出50、51、53。
(3)按照一定的顺序记录,就能保证不重不漏,清楚明了。
三、课堂作业新设计
1、教材练习二十二第1题。
(1)小组活动:找四个人扮演四位师徒,一个人记录。
(2)怎样交换位置更清楚明了?
(3)可以有多少种不同的排法?
2、教材练习二十二第2题。
独立排一排,并记录。注意排的顺序,体会方法。
3、教材练习二十二第3题。
四、思维训练
从写有1、2、3、4的四张卡片中任意选出2张,做一位数的乘法计算。共能组成多少个不同的乘法算式?共有多少个不同的积?写出这些算式。
五、板书设计
㈣ 人教版小学数学广角知识梳理
为什么从二年级开始数学课本内容都有数学广角?
“数学广角”是义务教育课程标准试验教科书二上开始新增设的一个单元,是新教材向学生渗透数学思想方法方面做出的新尝试。同时也是发展学生抽象能力和逻辑思维能力的好素材,把重要的数学思想方法通过学生日常生活中最简单的事例呈现出来。
二年级上册:
简单的排列和组合
(1)培养数学学习的兴趣和利用数学方法解决问题的意识。
(2)让学生经历摆学具、画图示、列图表等过程,逐步抽象出全面的、有序的排列和组合的方法,使学生的思维逐步由具体过渡到抽象。
(3)能找出最简单的事物的排列数和组合数,在活动中培养合作交流的意识和有序思考问题的能力。
简单的排列组合对二年级学生来说都早有不同层次的接触,如用1、2两个数字卡片来排两位数,学生在一年级时就已经掌握了。而对1、2、3三个数字排列成几个两位数,不少学生没有接触过,但是对于学生来说也不困难,这些实际情况,在设计本节课时,教学的重点应该偏重于让学生说一说有序排列、巧妙组合的理由,体会到有顺序、全面思考问题的好处。并在设计“摆数”、“握手”这些活动时难度再稍微提升些,尽量做到让每个学生都能有事可做。同时,根据学生的年龄特点在设计教案时也要做到设计学生感兴趣的环节,灵活处理教材。
二年级下册:
简单的推理
(1)经历对生活中的某些现象进行判断、推理的过程。
(2)能借助"做标记"、"列图表"等方式整理信息,并能对生活中的某些现象按一定方法进行推理。
(3)能有条理的表达自己思考的过程,与同伴进行合作与、 本单元的相关概念 。
三年级上册:
等量代换法
知识点
1、等量代换的思想:相等的量可以互相代替。
2、运用等量代换法来解决生活中的实际问题。
3、在解决等量代换数学问题的过程中,初步体会等量代换数学题的思想方法。
教学目标
1.使学生能初步学会等量代换的方法,接受等量代换的思想。
2.培养学生的观察力及初步的逻辑推理能力。
3、让学生在经历解决问题的过程中,获得经验,让学生充分感受生活中处处有 数学,数学与生活息息相关,形成我要学好数学的精神风貌。
4、在学习过程中培养学生团结、友好合作,营造和谐共进的氛围。
习题:
1、 1只河马的体重等于 2只大象的体重, 1只大象的体重等于 10匹马的体重。 1匹马的体重是 320千克,这只河马的体重是多少千克?
320×10=3200(千克 ) 是1只大象的体重
河马体重是 3200×2=6400(千克 )
320×(2×10)=6400(千克 )
2、 +++□=25,□=+。 求 =? □=?
3、一只菠萝的重量等于 2只梨的重量,也等于 4只香蕉的重量,还等于 2只苹果、 1只梨、 1只香蕉的重量之和。那么 1只菠萝等于几只苹果的重量?
4. +=21
+□ =38
+□ =15
=( )
□ =()
=()
5.一个数加上 4,减去 4,乘以 4,再除以 2,结果是 2,求这个数。
三年级下册
简单的组合: 生活中, 我们常常应用组合知识来解决问题。 如进行上衣和裤子的搭配、 出行时选择不同路线、 体育比赛场次的设定等。 本单元要学习的是找出简单事物的组合数, 是把几个事物, 每两个组合在一起, 找出有几种组合方法。可以用连线的方法进行, 按一定的顺序把要组合的事物两两相连, 在数一数连了几条线, 就得到了组合数。
简单的排列: 生活中, 我们也常常会应用排列知识来解决问题。 如邮政编码、电话号码、 身份证号码等各种编号。 排列与组合的区别是排列与事物的顺序有关,而组合与事物的顺序无关。 本单元学习的排列比较简单, 可以用摆一摆或列表的方法, 先确定第一个位置后, 再确定第二、 第三的位置, 看有几种可能的情况。就得到了他们有几种可能的情况, 也就是几种排列方法。 方法有多种, 只要能按一定顺序进行, 关键做到不重复、 不遗漏。
二、 教学内容 简单事物的排列。
三、 教学目标
知识目标: 联系生活实际, 通过观察、 猜测、 操作、 实验等活动, 让学生了解简单的排列组合的知识能找出最简单的排列数和组合数, 找出简单事物间的排列规律。
能力目标: 通过实践活动, 让学生经历找排列数和组合数的过程, 培养学生初步的观察、 分析和推理能力及有顺序地、 全面地思考问题的意识, 并通过互相交流, 使学生体会解决问题策略的多样性。
情感目标: 让学生感受数学在现实生活中的广泛应用, 进一步体会数学与日常生活的密切联系, 尝试用数学的方法来解决实际生活中的问题, 增强应用数学的意识, 并使学生在数学活动中养成与人合作的良好习惯。 教学重点: 让学生经历观察、 猜测、 试验等活动, 找出简单事物的排列和组合数。
教学难点: 在解决问题的过程中, 能进行简单的、 有条理的思考。 三、 单元学习内容的前后联系 知识点: 排列组合。
预测学生情况: 三年级学生已有初步的对自身的审美意识的能力, 衣服的不同搭配穿法是他们在生活中经常遇到的问题, 用学生经常接触的生活问题作为教学内容的载体, 能激发学生的学习兴趣。 引导学生通过动手操作、 观察分析, 找出所有的组合数, 充分展现学生的所有思考方法, 利用评价、 比较找出最简便、 合理的表示方法, 学生能体会到解决方法的多样化和最优化。
四年级上册:
一、烙饼问题(优化方案)
在解决问题的方案中,寻求最合理、最省事、最节约的最优方案。
(一)烙饼:每次只能烙两张饼,两面都要烙,每面3分钟。
最少需要的时间:饼的张数×3
1、如果要烙8张饼,最少要多少分钟?
(二)合理安排时间
1、烧水8分钟、洗水壶1分钟、洗茶杯2分钟、接水1分钟、找茶叶1分钟、沏茶1分钟。怎样才能让客人尽快喝上茶?请用流程图把沏茶的顺序表示出来。
2、小明(5分钟)、小亮(3分钟)、小叶(1分钟)同时来到学校义务室。要使三人的等候时间的总和最少,应该怎样安排他们的就诊顺序?
四年级下册:
鸡兔同笼
表格法、假设法
1、自行车和三轮车共10辆,总共有26个轮子。自行车和三轮车各有多少辆?(用假设法和方程解决)
2、六年级同学分组参加课外兴趣小组。科技类每5人一组,艺术类3人一组,共有37名学生报名,正好分成9个组。参加科技楼和艺术类的学生各有多少人?
3、规则:答对一题加10分,答错一题扣6分。
(1)2号选手共抢答8题,最后得分64分。她答对了几题?
(2)1号选手共抢答10题,最后得分36分。她答错了几题?
(3)3号选手共抢答16题,最后得分16分。她答对了几题?
五年级上册:
植树问题
一、了解间隔、间距、总长的概念、之间的关系。
植树问题的三种情况:
两边都栽:棵树=间隔数+1
一边载一边不栽:棵树=间隔数
两边都不栽:棵树=间隔数-1
注:封闭图形属于“一边载一边不栽”这种情况。棵树=间隔数
二、最外层的总点数=每边的点数×边数—边数
三、练习
1、在一条全长2千米的街道两旁安装路灯(两端也要安装),每隔50米安一座。一共要安装多少座路灯?
2、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?
3、笔直的跑道一旁插着51面小旗,他们的间隔是2米。现在要改为只插26面小旗,间隔应改为多少米?
4、圆形滑冰场的一周全长是150米。如果沿着这一圈每隔15米安装一盏灯,一共需要装几盏灯?
5、广场上的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间?
6、咱们班同学团体操表演,排成一个方阵,最外层每边站15人,最外层一共有多少名学生?整个方阵一共有多少名学生?
五年级下册:
(一)找次品
方法:把数量尽量平均分成3份,假如不能平均分,3份间尽量只相差1。
用天平找次品时,所测物品数目与测试的次数有以下关系:(只含一个次品,已知次品比正品重或轻。)
待测求物品数目
最少:3(n-1)次方+1 最多:3的n次方
注:如果不知次品是轻或重,那次数比以上次数多1次。
练习:
1、一箱糖果有12袋,其中有11袋质量相同,另有1袋质量不足,轻一些。称2次有可能称出来吗?至少称几次能保证找出这袋糖果来?
用下面的图表示称的过程:
把12袋糖分成3份,每份4袋。天平两边各放4袋。
平衡
不平衡
2、有3袋白糖,其中2袋每袋500克,另1袋不是500克,但不知道比500克重还是轻。你能用天平找出来吗?称几次?
3、五1班有25人,许多同学参加了课外小组。参加音乐组的有12人,参加美术组的有10人,两个组都没有参加的有6人。既参加音乐组又参加美术组的有多少人?
(二)打电话(每分钟通知1人)
第n分钟新接到通知的队员人数:2的(n-1)次方
到第n分钟所有接到通知的队员总数:2的n次方-1
到第n分钟所有接到通知的队员和老师的总数:2的n次方
1、第5分钟通知的队员人数?( )
2、5分钟内通知的队员人数? ( )
3、如果一个合唱团有50人,最少花多少时间就能通知到每个人?( )
六年级上册:
数与形
观察图形找规律,首先应找出哪部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后,再利用规律求解。
六年级下册:
抽屉原理
“抽屉原理”来源于一个基本的数学事实。将三个苹果放到两只抽屉里,要么在一只抽屉里放两个苹果,而另一只抽屉里放一个苹果;要么在一只抽屉里放三个苹果,而另一只抽屉里不放。这两种情况可用一句话概括:一定有一只抽屉里放入两个或两个以上的苹果。虽然我们无法断定哪只抽屉里放入至少两个苹果,但这并不影响结论。“抽屉原理”是数学的重要原理之一,在数论、集合论和组合论中有很多应用。它也被广泛地应用于现实生活中,如招生录取、就业安排、资源分配、职称评定等方面,我们经常会看到隐含在其中的“抽屉原理”。
方法:物体数 ÷抽屉数 (商+1)
1、8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?
2、向东小学六年级共有370名学生,六年级里至少有几人的生日是同一天?为什么?
3、六2班有49人,至少有5人是同一个月出生的,为什么?
4、把红、黄、蓝三种颜色的小棒各10根混在一起。
(1)如果让你闭上眼睛,每次最少拿出几根才能保证一定有2根同色的小棒?
(2)每次最少拿出几根,才能保证一定有不同颜色的小棒。
㈤ 人教版小学数学二年级下册数学广角学的是什么
《围棋中的数学问题》说课稿 人教版四年级下册数学广角[四年数学说课]
《围棋中的数学问题》说课稿一、说教材:1、教学内容:人教版教科书四年级下册数学广角第120页例3及部分练习。2、教材分析:大家知道,人教版的新教材都专门安排了“数学广角”单元,向学生渗透一些重要的数学思想方法,加强学生综合运用知识的能力,逐步提高解决问题的能力。本册教材主要是渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-07-27 08:39:00 数学广角—烙饼问题说课稿 人教版第七册[四年数学说课]
数学广角——烙饼问题说课稿一、说教材:《烙饼问题》是人教版教材第七册《数学广角》中的内容,主要通过讨论烙饼时如何合理安排操作最节省时间,让学生体会在解决问题中优化思想的利用。本节内容的安排,符合学生的认知特点,是知识源于生活,生活中处处存在数学的一种体现,为我们教师联系生活进行数学指导提供了很好的材料和示范,由于长期的“应试”教学的影响下,这部分知识对学生来...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-07-26 17:23:55 江苏(国标)版四年级上册《认识计算器及其计算方法》说课稿[四年数学说课]
四年级上册《认识计算器及其计算方法》说课稿“用计算器计算”是江苏(国标)版四年级(上册)数学第十一单元的教学内容,这部分内容是在学生熟练掌握了整数的四则计算法则及两步混合运算的基础上进行教学。通过学习,使学生可以借助计算器进行较大数目的四则运算,并借助计算器来探索有关规律,有利于帮助学生形成初步的探索和解决问题的能力。本单元内容分两段安排:第一段,先认识计算...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-07-26 17:22:03 人教版第七册活动内容《参观果园》说课稿[四年数学说课]
《小小策划家》是根据新课程标准的理念,结合我校《运用现代信息技术,培养学生的求异思维的课题研究》而设计的一节数学活动课,为了使活动内容与学生的生活更加贴近,因此我把人教版第七册活动内容《参观果园》改编为设计秋游方案。这节活动课包含了三大部分,第一,课前学生收集资料并作相应的调查,老师根据收集的资料和调查的数据制作成模拟网页。第二,在课堂中,让学生在网页中提取...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-07-26 17:16:18 小数点位置移动引起小数大小的变化[四年数学说课]
(教学设计说课稿)小数点位置移动引起小数大小的变化一、说教材:1、说课内容:九年义务教育六年制小学数学第八册第96页“小数点位置移动引起小数大小的变化”。2、本节课教材分析:小数点位置移动引起小数大小的变化这一内容的学习,是在已经掌握了小数的意义、小数的性质和小数大小比较的基础上进行学习的。学习这一规律既是小数乘除法计算的理论依据,又是复名数与小数相互改写的...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-07-26 17:12:59 《小数的产生和意义》说课[四年数学说课]
《小数的产生和意义》说课《小数的产生和意义》是在学生三年级学习了“分数的初步认识”和“小数的初步认识”的基础上进行教学的,是学生系统学习小数的开始。通过这部分内容的教学,使学生装进一步理解小数的意义和性质,为今后学习小数四则运算打好基础。本课时的教学重点是使学生明确小数的产生和意义,小数与分数的联系,小数的计数单位,从而对小数的概念有更清楚的认识。教学难点是...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-07-26 17:10:51 小数的初步认识说课[四年数学说课]
小数的初步认识说课一、说教材1.说课内内容:九年义务教育六年制小学数学第七册P117-118例1和例2及“做一做题目,练习二十八的第1-3题。2.教学内容的地位和作用:小数的初步认识是在学生熟练地掌握了亿以内的四则运算、初步认识分数的基础上进行学习的。本课内容包括认识一位小数和它的读、写法。认识一位小数是小数的初步认识中最基础的知识,它的学习,不仅为学生准确...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-07-26 17:07:29 小学数学第八册《整理与复习》说课稿[四年数学说课]
《整理与复习》说课稿一、教学内容小学数学第八册第二单元整理与复习P36—P72部分内容。二、教学目标使学生进一步掌握多位数的读、写法则。1、使学生进一步掌握求一个比亿大的数的近似数的方法。2、使学生理解四则运算中各部分间的关系。三、教学重点使学生理解四则运算中各部分间的关系。四、教学难点运用四则运算中各部分间的关系解决实际问题,提高自己的解题能力。五、课时安...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-07-20 09:40:09 小学数学说课稿 位置的表示方法[四年数学说课]
位置的表示方法——说课淞南二小孙金琪计算机在教育上的应用,使得教学手段、教学方法、教材观念与形式、课堂教学结构、以至教学思想与教学理论都发生了变革。然而数学来源于生活,生活又离不开数学知识。小学数学本身所涉及的都是一些具体问题,这些具体问题都离不开学生的日常生活。那么如何将计算机多媒体辅助教学与课堂教学相整合?因此,我认为教育手段现代化的有效性,是教师探索课...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-07-15 10:37:58 四年级数学活动课说课 《节约能源》[四年数学说课]
《节约能源》数学活动课——说课及教学设计一、说教材1、说课内容:九年义务教育小学数学第七册中--节约能源。2、教材的意义和作用:本活动通过让学生调查家里上月的用水、用电情况,并在小组内进行交流、比较,共同探讨节水、节电的好方法,一方面可以巩固前面所学的小数的有关知识,另一方面可以使学生逐步接触社会生活,了解一些实际生活中的常识,在解决实际问题的过程中发展初步...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-07-14 11:03:01 《三角形的特性》说课稿 人教版四年级数学说课[四年数学说课]
人教版四年级下册数学《三角形的特性》说课稿《三角形的特性》是人教版四年级下册第五单元的第一课时,本课是六年制数学第二学段“空间与图形”中的学习内容。在此之前,学生已经认识了平行四边形和梯形的特征。对三角形有了直观地认识,已经能从平面图形中分辨出三角形。本节课主要是帮助学生在原有的感性认识基础上,理解三角形的意义,掌握它的特征,为今后进一步学习其他几何图形的有...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-07-09 09:35:20 《简便计算》说课稿 人教版四年级下数学[四年数学说课]
一,说教材:《简便计算》这一课是人民教育出版社第八册数学第三单元P44的内容.是在学生已经掌握了乘法的意义并且对乘法交换律,结合律,分配律以及除法的定律有了初步认识的基础上进行教学的.本节课力求突出以学生发展为本的教育思想,所以整个教学过程要求以学生自主学习,自主探索为主,通过学生的观察,归纳,运用等数学学习形式,让学生去感受数学问题的探索性和挑战性.学生在...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-07-07 08:15:56 《三角形边的关系》说课稿[四年数学说课]
《三角形边的关系》说课稿一、说教材说课内容:人教版义务教育课程标准实验教科书《数学》第八册第82页例3——三角形边的关系。三角形边的关系这一内容是新教材新增加的内容,并安排在第二学段。通过这一内容的学习,使学生在已经建立三角形概念的基础上,进一步深化理解三角形的组成特征,加深学生对三角形的认识,同时,也为以后学习三角形与四边形及其他多边形的联系与区别打下基础...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-07-02 09:23:10 《正数和负数》说课[四年数学说课]
四年级下说期说课:《正数和负数》说课今天我讲的课是《正数和负数》,关于学生以前所学数的知识前面的李娜老师已经作了很好的梳理,我现在只就本节课所涉及的相关内容进行说课。一、我对课标要求的理解《数学课程标准》安排在小学的第二学段初步认识负数,这是小学阶段数学教学新增加的内容。很久以来,负数的教学一直安排在中学教学的起始阶段,现在考虑到负数在生活中的广泛应用,学生...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-07-02 08:48:21 《小数的性质》说课设计 四年级数学说课[四年数学说课]
五年制小学数学第七册说课:《小数的性质》说课设计一、教材1.教学内容:五年制小学数学第七册第三单元小数的意义和性质第三课时:“小数的性质”(课本第64-65页,例1—例4)包括:(1)小数的性质;(2)小数性质的应用(六年制第八册第四单元)。2.教材所处地位:本节是系统学习小数的开始,为后面学习小数四则计算做了必要的准备,起铺垫作用。3.教材的重点和难点:对...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-06-22 10:35:51 《三角形的认识》说课稿 苏教版国标[四年数学说课]
苏教版国标本四年级数学说课稿:“三角形的认识”说课稿一、教学背景和目标定位(一)教材分析:“三角形的认识”是小学数学苏教版国标教材第八册第三单元第一课时的内容。在此之前,学生已经学习了角,初步认识了三角形,但对三角形的三边关系未曾探索,本课将重点引导学生探究三角形的三边关系,理解任意二边之和大于第三边。教材中,例1让学生在现实情境中找出三角形,并用不同的材料...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-05-14 09:44:46 人教版《角的分类》说课[四年数学说课]
《角的分类》说课——人教版四年级上册数学说课《角的分类》是人教版小学数学实验教材四年级上册第二单元《角的度量》中第三课时的内容。一、教材分析:关于角,学生在二年级《角的初步认识》里已有了初步的接触,对于直角已经有了一些了解,但是大多是属于直观的描述。本册是在二年级的基础上恰当抽象出图形的特征。《角的分类》是本单元的第三课时,是在学生已初步认识直线、线段、射线...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-05-13 16:51:06 人教版《三角形的内角和》说课[四年数学说课]
《三角形的内角和》说课——人教版四年级下册数学说课稿★教材与学情分析《三角形的内角和》是人教版四年级下册的教学内容,这一内容是三角形的一个重要性质。它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。经过第一学段以及本单元的学习,学生已具备了一些相应的三角形知识和技能,初步的动手操作能力、主动探究能力以及合作学习的习惯,这为感受、理解、抽象“三...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-05-13 11:22:06 北师大版《乘法结合律》说课稿[四年数学说课]
四年级数学《乘法结合律》说课稿——北师大版《数学》第七册说课稿一、背景分析:本教材是在学生已经掌握了乘法的意义并且对乘法交换律有了初步认识的基础上进行教学的。本节课力求突出以学生发展为本的教育思想,所以整个教学过程要求以学生自主学习、自主探索为主,通过学生的观察、验证、归纳、运用等数学学习形式,让学生去感受数学问题的探索性和挑战性。学生在认知的过程中可能对于...
软件大小: 未知运行环境:Win9X/2000/XP/2003/授权方式: 免费版推荐级别:
2008-05-13 10:21:02 《小数点搬家》说课设计(北师大版八册)[四年数学说课]
《小数点搬家》说课设计——北师大版小学数学说课设计(第8册)教学内容:义务教育课程标准实验教材(北师大版)四年级下册第三单元中的“小数点搬家”。一、教材分析:教材利用学生喜爱的卡通人物开餐馆的情境,呈现了“山羊快餐”通过价格的变化吸引顾客的故事。生动地说明小数点移动引起小数大小变化的规律。二、学情分析:四年级的学生已经了解了一些有关小数的知识,看到小数点在数...
㈥ 人教版四年级数学上册《数学广角》该如何教学
教材分析:《数学课程标准》指出:当学生“面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻找解决问题的策略。”本课所学内容就是通过日常生活中的简单事例,让学生尝试从优化的角度在解决问题的多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用,以及在解决问题中的运用。
设计理念:优化问题是人们经常要遇到的问题,本课的教学设计力求从学生的生活经验和知识基础出发,创设问题情境,让学生通过观察、操作、实验、推理、交流等活动寻找解决问题的方法,从不同的方法中选择最优方案,在解决问题中初步体会数学方法的应用价值,初步体会优化思想,培养学生良好的数学思维能力。
教学目标:
1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。
2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。
3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。
教学案例:
一、创设情境,学习新知
1、预设情景
师:同学们,在节假里你家来了客人你准备做什么呢?
师:星期天的上午李阿姨到小明家来做客。
师:从图.......能得到哪些信息?
生:小明的妈妈让小明给李阿姨沏茶。
师:想一想你平时在家沏茶时要做什么呢?生:、、、、、、
师:你们要做这么多事,是吧!那我们来看一看小明沏茶都需要做那些事?分别需要多长时间?谁来说给大家听一听?
2、自主设计方案
师:小明需要做这么多事情,那么请你帮小明想一想,他应该先做什么?再做什么?怎样才能尽快让客人喝上茶?用你们课前准备的工艺图片摆一摆,设计一个最佳方案,并算一算需要多长时间?
3、展示学生不同的方案
师:谁愿意上讲台来展示你的设计方案?
师:刚才同学们帮小明设计的沏茶的方案是通过同时做几件事情才节省了时间,在烧水的同时做洗茶杯和找茶叶这两件事,也就是说洗茶杯和找茶叶共花得分钟时间可以在烧水的8分钟之内完成。这样小明就可以在8分钟以内完成需要11分钟才完成的事情,也就让客人尽快地喝茶了。
4、小结
师:我们在做一些事情时,应先确定好做事的先后顺序,然后在有效的时间内尽可能多同时做几件事,能同时做的事情越多,所用的时间就越短。李阿姨喝完茶想走了,但小明是非常好客的好孩子,非要李阿姨留下不可,(点击多媒体)我们来看一看到底是为什么呢?
二、再探新知
师:原来小明的妈妈要用最拿手的烙饼来招待客人。从图.......能得到哪些信息?(这一环节是通过创设出生活化的情境,激发学生的学习兴趣。利用烙饼这一事例,调动学生已有的生活经验,使学生处于主动思考解决问题的最佳状态。)
1、 学生观察、理解图中的内容。 教师提问:“烙一张饼需要几分钟?“ “烙两张饼呢?” “爸爸、妈妈和小丽各吃一张饼,一共要烙几张饼呢?” “一共要烙3张饼,怎样烙花费的时间最少?”
2、学生拿出准备好的圆片,圆片的正、反面上分别写上正、反两字来代表饼的正、反面。每烙完一面,就让学生在这一面上用铅笔做上记号。先让学生试一试,思考烙3张饼,怎样才能使花费的时间最少,然后分小组讨论交流,说一说自己是怎样安排的,自己的方案一共需要多长时间,并把自己的实践结果记录在老师发的表格中,教师参与到小组活动中。(相信学生,放手让学生探索解决问题的方法,才能使学生成为学习的主人。)
3、展示学生的方案。
教师:“谁来给大家说一说,你们小组设计的方案是什么?” 在展示台上投影学生填写的表格。小组代表来根据表格叙述设计方案,并用图片来演示。几个小组演示完毕后,教师让大家来比较。 “这些方案,哪一种能让大家尽快地吃上饼?” (烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)
4、拓展延伸:
教师:刚才我们一起找到了烙3张饼的最佳方法。请大家想一想,如果要烙4张饼,怎样烙才能尽快吃上饼呢?” 小组活动,并用表格记录。小组代表发言。班内交流,并比较哪个小组的方法最好。 教师小结后提问:“如果要是烙5张饼,怎样才能让大家尽快地吃上饼?” 小组活动,进行记录。 通过小组交流,使学生找到最佳方法。(通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用。)
教师:“如果要烙6张饼、7张饼……10张饼,怎样安排最节省时间?” 小组讨论交流,说一说自己的发现。学生在充分交流探讨的基础上,得出结论:如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2张2张的烙,最后3张饼按上面的最佳方法烙,最节省时间。让学生仔细观察表格,看发现了什么?得出结论:每多烙一张饼,时间就增加3分钟,用饼数乘烙一面饼所用的时间,就是所用的最短时间。
教师:“谁能很快地说出烙11张饼用多长时间?烙15张饼呢?”呢? 假如妈妈使用了新式电饼铛,每烙一面饼只需要2分钟,烙3张饼需要几分钟?烙5张饼呢?烙6张饼呢?” ( 通过拓展性的设问,既对前面所学知识进行了巩固,也为学生思维能力的培养提供了时间和空间。)
三、 实践应用
出示114页做一做第1题。
教师:“现在美味餐厅的厨师也遇到了难题,餐厅里来了三位客人,每人点了两个菜,而餐厅里只有两位厨师,假设两个厨师做每个菜的时间都相等,怎样安排炒菜的顺序才比较合理呢?” 学生思考后,进行汇报交流。(让学生可以更加领悟到数学思想方法,同时感受严谨求实的科学精神。)
四、全课总结教师:“这节课大家的收获是什么?” 学生交流。
教师:“今天,我们一起学习了如何用最优方案解决问题的例子,大家可以回去找一找生活中的实例,看能不能用今天所学的知识来解决。” (最后老师对学生提出要求,可以让学生感受到数学在日常生活中的广泛应用,也可以进一步巩固所学知识,通过尝试对知识的运用,来初步培养学生应用的意识和解决问题的能力。)
总之,这一节课通过简单最优化的问题向学生渗透优化思想,让学生体会运筹思想在实际解决问题中的作用,来感受数学的魅力。
㈦ 小学数学广角找次品教学设计
现实生活生产中的“次品”有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。接下来我为你整理了小学数学广角找次品教学设计,一起来看看吧。
教学内容:
新人教版小学五年级数学下册第八单元《数学广角———找次品》
教学目标:
1、通过比较、猜测、验证等活动,探索解决问题的策略,渗透优化思想,感受解决问题策略的多样性,培养观察、分析、推理的能力。
2、学习用图形、符号等直观方式清晰、简明地表示数学思维的过程,培养逻辑思维的能力。
3、通过解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
教学重、难点:
让学生经历“比较——猜想——验证”的过程,寻求找次品的最优策略。
学情分析:
“找次品”的教学内容在“奥数”活动中时有出现,用图形帮助思考,对培养学生动手能力和思维能力都是比较好的,学生虽然是初次接触,但只要通过动手实践、小组讨论、探究等方式来解决问题,掌握一题多解的方法还是不难的。关键是最优化的解决策略,学生总结方法时有些难度,教师要适时引导。
教学过程:
一、弄清问题题意,激发探究欲望
师:今天这节课,我们就从某公司招聘员工的一道题目开始,假定你就是应聘者,想不想接受一下智慧的挑战?(出示课件)
问题是:假如你有81个外观完全一样的玻璃球,其中有一个球比其它的球稍轻,属于次品,如果只能利用没有砝码的天平来断定哪一个球轻,请问你最少要称几次才能保证找到较轻的那个球?
(一分钟思考)学生汇报:1次丶2次⋯…
师:请只用1次的同学说一说,你是怎样想的?
生1:
生2:
师:看来,1次虽少,但只是有可能,不能保证找到那个次品球,所以我们在思考这个问题的时候,不光要最少,还要以保证能找到为前提。
师:如果以“保证能找到”为前提,在同学们这么多的答案中,哪个次数是最少的呢?这一节课我们就一起来研究这个问题一一找次品。
二、简化问题,经历问题解决基本过程。
对于从81个小球中找次品的问题,比较复杂,那么怎样开始我们今天的研究呢?
生:可以从最少的试一试。
师:如果从最简单的入手研究,2个小球至少称几次?
生:1次。
师:如果是3个呢?
生猜测:2次?3次?1次?
师:老师这里有3瓶口香糖,其中有一瓶少了3粒,你觉得应该怎样称?
生汇报:先把其中的2瓶放在天平的两侧,如果左边下沉,就说明右边的是次品;如果右边的下沉,就说明左边的是次品;如果天平平衡,则没称的是次品。(学生边说老师边配合进行称量演示。)
师边演示课件边带领学生进一步感受推理过程:虽然有3瓶,而天平只有两个托盘,但是只需要把其中的2瓶放在天平的两侧,可能平衡,也可能不平衡,如果平衡⋯⋯如果不平衡⋯⋯不论是否平衡,利用推理,只要称1次肯定能将那个次品找出来。
师小结:看来2个和3个虽然数量不同,但是都只称1次就可以将次品找到。(将探究结果记录在表格中)
三、再次探究“关键数目”,初步感知、归纳规律
1、探究4个小球的情况。
(1)师:如果再增加一个球,现在有4个球,其中有一个是次品,一次可以保证找到次品吗?
生猜测:4次?3次?⋯⋯
师:纸上得来终觉浅,绝知此事要躬行。咱们还是亲自动手探究一下吧。请同学们与自己的同桌共同讨论一下。可以借用小方块摆一摆,也可以在纸上画一画,不论用什么样的方式,都要将思考过程简要记下来。
(生分组研究)
师:4个小球时,你们称了几次?
(生边汇报师边板书枝状图)
师:4个球有两种不同的测量方法,但结果测量的次数都一样,至少要2次才能保证找出次品。(把结果记录在表格中)
师:如果球的个数再多一些,例如9个,至少需要几次才能保证找出次品呢?请同学们用学具摆一摆,用笔画一画。
(生汇报师出示课件)
师:为什么把9个球分成(3,3,3)只要2次就可以找到次品呢?
(引导学生发现规律,把结果填入表格中)
师:4个球只需要2次就可以保证找到次品,9个球也只需要2次就能保证找到次品,那么大胆猜测一下,在4与9之间的5、6、7、8个球,至少需要几次就能找出次品呢?⋯⋯现在我们分组来研究一下:第1大组的同学研究5个小球的情况,依次研究6、7、8个球。
(生汇报,重点是8个球)(把结果填入表格中)
师:我们来比较一下,我们将8个小球分成(3,3,2)三组称2次,可是把8个小球分成(4,4)两组却称了3次,多称了1次,多称的1次多在哪儿呢?
生:小球数是2和3个时只用一次,把8分成(3,3,2)每组是3个或2个,3个或2个都只需要称1次就能找到次品。
师:你们明白他的意思吗?你们看,称(3,3)或(4,4),都只称1次就能确定次品在哪边,可是接下来,第一种是在3个或2个里找,只需一次,第二种要在4个里找,要用2次,所以会多一次。
师:大家最后称的次数不同,原因是什么呢?
生:分的组数不同,每组数量也不同。
师:那到底怎么分,才能既保证找到次品,又能使称的次数尽可能少呢?
(生分组讨论后汇报)
生1:应该分3组,因为天平有2个托盘⋯⋯
生2:每组的数目还要少。
生3:尽可能让每组数目比较接近,每次称完,次品就被确定在更小的范围内。
师:你们太了不起了,通过我们刚才的试验、讨论、交流,不仅解决了问题,而且发现了其中分组的秘密规律。
(师板书:分3组,尽量平均分。)
四、进一步发现规律
师:现在我们就应用分组的规律,再来一次实验,如果小球个数是10个(课件),该怎么分?称几次?
(生汇报,师板书:10(3,3,4)3次)(课件)
师:如果是27个呢?(课件)
(生汇报,师板书:27(9,9,9)3次(课件)
师:这位同学说的太好了,他先是分成了3组,然后用转化的思想把问题变成我们前面解决的9个小球的找次品问题了。
看来大家都掌握了分组规律。最开始的招聘问题,81个小球,大家能解决了吗?谁有了答案?把结果直接写在黑板上。
(生讨论并汇报结果)(课件)
师:你能发现它和前面我们解决的27个,9个,3个,有什么关系吗?
(小组研究)
生汇报:被测小球数目是几个3相乘就称几次,比如4个3相乘是81,81个小球就只需称4次。
师:你们很了不起,既解决了公司“招聘”问题,又发现了“被测物品数目与称的最少次数之间”神秘的规律。
五、课堂小结
随着招聘问题的解决,今天的课也即将结束,回顾我们整节课的经历,从最初的招聘问题,回归到解决2、3的问题,再到研究8、9发现分组规律,直至研究了更大的数目,像27、81这样的数目,发现了被测物品数目与称的最少次数之间的一些关系。
在这一路的探究过程中,我们不断思考,不断实践,不断发现,我想大家在收获知识的同时,一定收获了更多的智慧。最后有两句话与大家共勉:(课件出示)
探究问题,学会化繁为简
解决问题,要有优化意识