‘壹’ 数学集合中Q、N、Z表示的意义是什么
Q表示有理数集
N表示非负整数集{0,1,2,3……}
Z表示整数集合{-1,0,1……}
集合中其他字母的含义:
R:实数集合(包括有理数和无理数)
N*/N+:正整数集合{1,2,3,……}
C:复数集合
∅ :空集(不含有任何元素的集合)
Q+:正有理数集合
Q-:负有理数集合
R+:正实数集合
R-:负实数集合
集合的三大特性
1、互异性
集合的互异性是指“对于一个给定的集合,集合中的元素是互异的”,就是说,“对于一个给定的集合,它的任何两个元素都是不同的”。因此,如果把两个集合{1,2,3,4}、{3,4,5,6,7}的元素合并在一起构成的一个新集合只有1,2,3,4,5,6,7这七个元素,不能写成{1,2,3,4,3,4,5,6,7}。
2、确定性
集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。可从两个方面理解:一方面是从元素的意义上可以理解为“对于一个给定的集合,集合中的元素是确定的”;
另一方面是从元素与集合的关系上可以理解为元素与集合只能是属于和不属于的关系,也就是设A是一个给定的集合,a是某一具体对象,则对象a或者是A中的元素,即a∈A,或者不是A中的元素,即a∈A,只有这两种情形,两种情况必有一种且只有一种成立,没有第三种情形发生。
3、无序性
集合的无序性是指表示一个集合时,构成这个集合的元素是无序的,例如对于由1,2,3,4,5这五个数组成的集合,我们可以记为{1,2,3,4,5},也可以记为{3,1,2,5,4}。
‘贰’ 数学里Q是代表什么
数学里的Q代表有理数集即全体有理数组成的集合。
1、所有正整数组成的集合称为正整数集,记作N*,Z+或N+。
2、所有负整数组成的集合称为负整数集,记作Z-。
3、全体非负整数组成的集合称为非负整数集(或自然数集),记作N。
4、全体整数组成的集合称为整数集,记作Z。
5、全体实数组成的集合称为实数集,记作R。
概念
集合是指具有某种特定性质的具体的或抽象的对象汇总而成的集体。其中,构成集合的这些对象则称为该集合的元素。
例如,全中国人的集合,它的元素就是每一个中国人。通常用大写字母如A,B,S,T,...表示集合,而用小写字母如a,b,x,y,...表示集合的元素。若x是集合S的元素,则称x属于S,记为x∈S。若y不是集合S的元素,则称y不属于S,记为y∉S
‘叁’ 在数学中,N、Z、Q、R 分别代表什么呢
N全体非负整数(或自然数)组成的集合;R是实数集;Z是整数集;Q是有理数集;Z*是正整数集;N*是正整数集。
集合及运算的概念
集合:一般的,一定范围内某些确定的,不同的对象的全体构成一个集合。
子集:对于两个集合A和B,如果集合A中的任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A是集合B的子集,记作A⊆B读作A包含于B。
空集:不含任何元素的集合叫做空集。记为Φ。
集合的三要素:确定性、互异性、无序性。
集合的表示方法:列举法、描述法、视图法、区间法。
集合的分类:(按集合中元素个数多少分为:)有限集、无限集、空集。
(3)数学几何Q代表什么扩展阅读:
集合的运算性质
1、A∩B=B∩A;A∩B⊆A;A∩B⊆B;A∩U=A;A∩A=A;A∩φ=φ。
2、A∪B=BUA; A⊆A∪B; B⊆A∪B;A∪U=U;A∪A=A;A∪φ=A 。
3、Cu(CuA)=A;Cuφ=U;CuU=φ;A∩CuA=φ;A∪CuA=U (摩根定律或反演律)。
4、A⊇B,B⊇A,则A=B,A⊇B,B⊇C,则A⊇C。
常用结论
1、A⊆B<=>A∩B=A;A⊆B<=>A∪B=B; A∪B=A∩B<=>A=B。
2、CuA∩CuB=Cu(A∪B),CuA∪CuB=Cu(A∩B)——德摩根律。
‘肆’ 数学中R,Z,N,Q都代表什么意思
R:实数集合(包括有理数和无理数);Z:整数集合{…,-1,0,1,…};N表示非负整数集;Q表示有理数集。
其他表示:
N:非负整数集合或自然数集合{0,1,2,3,…}
N*或N+:正整数集合{1,2,3,…}
Q+:正有理数集合
Q-:负有理数集合
R+:正实数集合
R-:负实数集合
C:复数集合
∅ :空集(不含有任何元素的集合)
(4)数学几何Q代表什么扩展阅读:
集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义。
即集合是“确定的一堆东西”,集合里的“东西”则称为元素。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体 。
‘伍’ 数学里的Q代表什么数集
Q表示【有理数集 】x0dx0aQ+或Q+表示正有理数集。x0dx0aQ-或Q-表示负有理数集。x0dx0a x0dx0a有理数的英文是: Rational number x0dx0a['ræʃənl'nʌmbə],但不能再用R表示了。由于任何一个有理数都是两个整数之比的结果(商),而商的英文是quotient x0dx0a['kwəuʃnt],所以就用Q表示了。
‘陆’ q在数学中代表什么集合
所有有理数的集合表示为Q,有理数的小数部分有限或为循环。无限不循环小数和开根开不尽的数叫无理数,比如π,3.141592653...等,而有理数恰恰与它相反,整数和分数统称为有理数,包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。有理数分为整数和分数,整数又分为正整数、负整数和0,分数又分为正分数、负分数,正整数和0又被称为自然数。
‘柒’ 数学中的Z,Q,R分别是什么…有哪些数
Z:在数学中代表的是整数集。
包括数字:
1、正整数,即大于0的整数如,1,2,3······直到n。
2、零,既不是正整数,也不是负整数,它是介于正整数和负整数的数。
3、负整数,即小于0的整数如,-1,-2,-3······直到-n。(n为正整数)
Q:在数学中代表的是有理数集。
包括数字:
1、正有理数,包括正整数和正分数,例如1,2,3······直到n,以及1/2,1/3······正分数。
2、负有理数,包括负整数和负分数,例如-1,-2,-3······直到-n,以及-1/2,-1/3······负分数。
3、零。
R:在数学中代表的是实数集。
包括数字:
1、有理数,由所有分数,整数组成,总能写成整数、有限小数或无限循环小数,并且总能写成两整数之比。
2、无理数,实数范围内不能表示成两个整数之比的数。常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。
(7)数学几何Q代表什么扩展阅读:
1、整数集Z的由来:
德国女数学家诺特在引入整数环概念的时候(整数集本身也是一个数环),她是德国人,德语中的整数叫做Zahlen,于是当时她将整数环记作Z,从那时候起整数集就用Z表示了。
2、有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
3、实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。
4、有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。
‘捌’ 数学q是什么意思
Q是有理数集,但Q并不表示有理数,有理数集与有理数是两个不同的概念。
有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。
有理数命名由来
“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。中国在近代翻译西方科学着作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。
但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的“比”。与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。
‘玖’ 数学里的Q代表什么数集
数学里的Q代表有理数集合。
在数学中,常使用大写的字母“Q”表示有理数组成的合集,这是数学中的常用规定,是为了在数学计算中方便书写而设定的。
常用的有理数集合经常在字母前后增加“+”和“-”分别表示正有理数集合和负有理数集合。
(9)数学几何Q代表什么扩展阅读:
集合的特性
1、确定性:给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现 。
2、互异性:一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。
3、无序性:一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。