Ⅰ 初一数学绝对值,详细点!!谢了!
定义
数轴上一个数所对应的点与原点的距离叫做该数绝对值。绝对值只能为非负数。
代数定义: |a|=a(a≥0) |a|=-a(a≤0)
几何意义
在数轴上,一个数到原点的距离叫做该数的绝对值.如:指在数轴上 表示的点与原点的距离,这个距离是5,所以的绝对值是5,又如指在数轴上表示1.5的点与原点
的距离,这个距离是1.5,所以1.5的绝对值是1.5。
代数意义
正数和0的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0 互为相反数的两个数的绝对值相等 a的绝对值用“|a |”表示.读作“a的绝对值”. 应该是等于小于号和大于等于号 如:|-2|读作负二的绝对值。
正数的绝对值是它本身。
负数的绝对值是它的相反数。
,绝对值是非负数≥0。
0的绝对值还是零。
特殊的零的绝对值既是他的本身又是他的相反数,写作|0|=0 |3|=3 =|-3|=3
两个负数比较大小,绝对值大的反而小
比如:若 |2(x—1)—3|+|2(y—4)|=0,则x=___,y=____。(|是绝对值) 答案: 2(X-1)-3=0 X=5/2 2Y-8=0 Y=4
一对相反数的绝对值相等: 例+2的绝对值等于—2的绝对值(因为在数轴上他们离原点的单位长度相等)
无论是绝对值的代数意义还是几何意义,都揭示了绝对值的以下有关性质:
(1)任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性。
(2)绝对值等于0的数只有一个,就是0。
(3)绝对值等于同一个正数的数有两个,这两个数互为相反数。
(4)互为相反数的两个数的绝对值相等。
绝对值不等式
(1)解绝对值不等式必须设法化去式中的绝对值符号,转化为一般代数式类型来解; (2)证明绝对值不等式主要有两种方法:
A)去掉绝对值符号转化为一般的不等式证明:换元法、讨论法、平方法; B)利用不等式:|a|-|b|≤|a+b|≤|a|+|b|,用这个方法要对绝对值内的式子进行分拆组合、添项减项、使要证的式子与已知的式子联系起来
关于绝对值的争议
如果把向南走1公里记为+1,把向北走1公里记为-1,对-1求绝对值,结果就成了向南走了1公里?!显然这里是有问题的。
问题在于无论是正数还是负数都是相对数,不是绝对数,所以相对数求绝对值后得到的应是无符号的数,而不是正数。所以,无符号的数不只是一个零,应该还有其他的无符号数!
所以有,|-1|=|+1|=1,这里1不是正数,而是与0一样的无符号数!
关于无符号数的可能的计算方法:
如果把三个女性记为-3,把四个男性记为+4,问:一共有几个人,计算方法是两个数的绝对值相加,也就是7个人。如果问男女差是多少,计算方法是相对数相加,是+1。
如果把向南走1公里记为+1,把向北走2公里记为-2,问:一共走了多少公里,计算方法是两个数的绝对值相加,也就是3公里。如果问相对走了多少公里,计算方法是相对数相加,是-1。 如果把向零上的10度记为+10,把零下5度记为-5,问:一共上下差多少度,计算方法是两个数的绝对值相加,也就是15度。如果问温的和是多少度,计算方法就是相对数相加,是+5。 如果题中没有说什么是正,如:邮递员送信先向南10米,再向北5米,做题前必须写:记什么为正,一般不用写另一个,因为不是正就是负,知道一个就行了。
所以对于绝对值的概念也是有争议的。有人并不认为绝对值就一定是正数。这说明数学也是在不断发展之中的。而我们的见到的数学只是历史的过程中的一个阶段。
绝对值为无符号数
当阴阳平衡的时候,事物既不表现出阴,也不表现出阳,也就是零的状态(零的确代表着无,其实也代表着平衡,(-1)+(+1)=0,这不就是平衡嘛!)。所以,所谓(-1)+(+3)=+2,其意思是阴阳的不平衡,阳比阴多两个,所以是+2。而所谓(+1)+(-3)=-2,道理是一样的,只是这时阴占了多数,阴比阳多了两个。
男女、雌雄的道理也是一样的。三个男性(+3)加两个女性(-2)就不平衡,所以也就有了(+3)+(-2)=+1,男性比女性多出一个来。电荷也是如此,如果我们用绸子摩擦玻璃棒,玻璃棒上的电荷就会不平衡,玻璃棒也就会表现出电性。比如说(0)-(-2)=+2,也就是在平衡下减去阴,结果就为阳了,这里就是+2。
那么绝对值是什么呢?绝对值就是无符号的数。比如说三个人,我们不说男性,也不说女性,我们只说人,那么我们用什么符号来表示呢?显然不可以用符号来表示,这里的3只可以是无符号的数,假如我们记为3(注意,这里的3与+3是不同的,+3是有符号的数,而3是无符号的数)。这样,当我们问,三个男性(假设记为+3)加三个女性(假设记为-3),一共有几个人的时候,我们就必须用绝对值相加,也就是|+3|+|-3|=6,也就是六个人。这里的6就是无符号数。如果按照以往的数学观念,我们把这里的6理解为正数就不对了,因为这样就变成了六个男性了。 历史的经验值得汲取。一切都在探索之中,最后答案是什么,一时谁也难以看的清楚。所以难免会解释不清楚和显得很幼稚。但我们不可以因此而拒绝新的探索才是。