‘壹’ 做数学证明题有什么好方法吗
我个人数学算是比较好的。浅谈一下,数学证明题在考试中是最最最容易拿分的题目。很多人觉得不好做或者没有好的方法去解答,是因为有这么一个误区在里面。
证明题切记一句话,很重要,不能用未知证已知。乍看下像是一句废话,但实际很实用。一个证明题目中,可以分成两部分,已知条件(这点就要自己细心分析了,包括基础知识的变形啊、基本功啊、数学模型建模啊等)和求证结论。思路上可以倒着来推到结论,但证明过程一定要正着写,就是用已知的真理、已知结论来推导出来,不管是不是废话,是不是众所周知的公理,只要不是题目给出的条件,就必须写出来推导过程,这是拿分要点。
其次说一说思路怎么来。一般要证明的东东比较不容易看出来,这个时候要到倒着来推导,先用题目给出的结论去推导题目的条件,切记,这个是思路!!比较容易得到中间它需要考察到你的关键知识点,一些定理变形云云。。如果是几何题目就更容易找到思路,基本就是默认求证是正确的,然后需要一条或几条关键的辅助线,这个就需要积累了,都是有规律的。 总之,思路要逆向来推导,先假设求证正确,反向推到已给条件,画出辅助线,求出辅助定理。。证明过程一定要用题目给出的条件一步步来正明。
‘贰’ 数学证明题的八种方法是什么
1、分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等。
结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。
2、逆推法从结论出发寻求证明方法。如2004年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。
3、换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。
公式具有抽象性,公式中的字母代表一定范围内的无穷多个数。有的学生在学习公式时,可以在短时间内掌握,而有的学生却要反来复去地体会,才能跳出千变万化的数字关系的泥堆里。教师应明确告诉学生学习公式过程需要的步骤,使学生能够迅速顺利地掌握公式。
‘叁’ 初中数学证明题解题格式
证明三角形全等就是初中证明题的其中一个部分。步骤有三步。
1、通读这个话题中的题目, 熟悉问什么的问题,然后拿着问题去看图形, 随便把已知的条件放在图表里,一目了然 。
(3)如何写数学证明题扩展阅读
初中数学证明题解题格式:牢记几何语言
首先,从几何第一课起,就应该特别注意几何语言的规范性,理解并掌握一些规范性的几何语句。如:“延长线段AB到点C,使AC=2AB”,“过点C作CD⊥AB,垂足为点D”,“过点A作l‖CD”等,每一句通过上课的教学,课后的辅导,手把手的作图,表达几何语言;表达几何语言后作图,反复多次,让学生理解每一句话,看得懂题意。
其次,要注意对几何语言的理解,几何语言表达要确切。例如:钝角的意义是“大于直角而小于平角的叫钝角”,“大于直角或小于平角的角叫钝角”,把“而”字说成了“或”字,这就是学习对几何语言理解不佳,造成的表达不确切。
“一字之差”意思各异,在辅导时,注重语言的准确性,对其犯的错误反复更正,做到学习之初要严谨。
‘肆’ 做数学证明题的思路是什么,过程怎么写
1. 弄清题意
如何弄清题意呢?根据命题的定义可知,命题由条件与结论两部分组成,因此区分命题的条件与结论至关重要,是解题成败的关键。命题可以改写成“如果………..,那么……….”的形式,其中“如果………..”就是命题的条件,“那么…….”就是命题的结论
2、根据题意,画出图形。
图形对解决证明题,能起到直观形象的提示,所以画图因尽量与题意相符合。并且把题中已知的条件,能标在图形上的尽量标在图形上。
3. 根据题意与图形,用数学的语言与符号写出已知和求证。
众所周知,命题的条件---已知,命题的结论---求证,但要特别注意的是,已知、求证必须用数学的语言和符号来表示。
4. 分析已知、求证与图形,探索证明的思路。
对于证明题,有三种思考方式:
(1)正向思维。对于一般简单的题目,我们正向思考。
(2)逆向思维。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。
(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路。
5. 根据证明的思路,用数学的语言与符号写出证明的过程
证明过程的书写,其实就是把证明的思路从脑袋中搬到纸张上。这个过程,对数学符号与数学语言的应用要求较高,在讲解时,要提醒学生任何的“因为、所以”,在书写是都要符合公理、定理、推论或以已知条件相吻合,不能无中生有、胡说八道,要有根有据!
6. 检查证明的过程,看看是否合理、正确
任何正确的步骤,都有相应的合理性和与之相应证的公理、定理、推论,证明过程书写完毕后,对证明过程的每一步进行检查,是非常重要的,是防止证明过程出现遗漏的关键。最后,同学们在平时练习中要敢于尝试,多分析,多总结。才能做到熟能生巧!
‘伍’ 数学证明题怎么做
以下采用代数法来解答这个问题。
为了计算方便,不妨设BD=2,CD=4,BC=2a, AB=b,
【1】先算出a与b的关系式
根据等腰三角形性质,cosB=a/b
又,在ΔDBC中,利用余弦定理得,cosB=(BD²+BC²-CD²)/2BD*BC=(a²-3)/2a
则,a/b=(a²-3)/2a,即:
b=2a²/(a²-3)
b-2=6/(a²-3)
【2】用a、b表达出cos∠ADE
在ΔDBC中,利用余弦定理得,cos∠ADE=-(BD²+CD²-BC²)/2BD*CD=(a²-5)/4
【3】转化命题,并进行证明
延长ED至F,使得DF=DA,连接AF
则∠ADE=2∠F,如果能证明∠F=∠AED,则命题得证
也就是要证明AF=AE
令∠ADE=γ
在ΔADF中,利用余弦定理得,
AF²=2AD²-2AD²cos∠ADF=2AD²+2AD²cos∠ADE
=2(b-2)²(1+cosγ)=2*36/(a²-3)² *(1+(a²-5)/4)
=18(a²-1)/(a²-3)²
在ΔADE中,利用余弦定理得,
AE²=AD²+DE²-2AD*DE*cos∠ADE
=(b-2)²+9-6(b-2)cosγ=(b-2)(b-2-6cosγ)+9
=6/(a²-3)[6/(a²-3)-3(a²-5)/2]+9
=18[2-(a²-3)(a²-5)/2]/(a²-3)²+9
=9[4-(a²-3)(a²-5)]/(a²-3)²+9
=9(4-a^4+8a²-15)/(a²-3)²+9
=9[(-a^4+8a²-11)/(a²-3)²+1]
=9[(a²-3)²-a^4+8a²-11]/(a²-3)²
=9[a^4-6a²+9-a^4+8a²-11]/(a²-3)²
=9(2a²-2)/(a²-3)²
=18(a²-1)/(a²-3)²
显然,AF=AE
故,命题得证
‘陆’ 初中数学证明题技巧 如何做数学证明题
1、证明两线段相等
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
*12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
2、证明两个角相等
1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等。
3、证明两条直线互相垂直
1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
5.一条直线垂直于平行线中的一条,则必垂直于另一条。
6.两条直线相交成直角则两直线垂直。
7.利用到一线段两端的距离相等的点在线段的垂直平分线上。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
10.在圆中平分弦(或弧)的直径垂直于弦。
11.利用半圆上的圆周角是直角。
4、证明两直线平行
1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
6.平行于同一直线的两直线平行。
7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。
5、证明线段的和差倍分
1.作两条线段的和,证明与第三条线段相等。
2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。
3.延长短线段为其二倍,再证明它与较长的线段相等。
4.取长线段的中点,再证其一半等于短线段。
5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。
6、证明 角的和差倍分
1.与证明线段的和、差、倍、分思路相同。
2.利用角平分线的定义。
3.三角形的一个外角等于和它不相邻的两个内角的和。
7、证明线段不等
1.同一三角形中,大角对大边。
2.垂线段最短。
3.三角形两边之和大于第三边,两边之差小于第三边。
4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。
5.同圆或等圆中,弧大弦大,弦心距小。
6.全量大于它的任何一部分。
8、证明两角的不等
1.同一三角形中,大边对大角。
2.三角形的外角大于和它不相邻的任一内角。
3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。
*4.同圆或等圆中,弧大则圆周角、圆心角大。
5.全量大于它的任何一部分。
9、证明比例式或等积式
1.利用相似三角形对应线段成比例。
2.利用内外角平分线定理。
3.平行线截线段成比例。
4.直角三角形中的比例中项定理即射影定理。
5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。
6.利用比利式或等积式化得。
10、证明四点共圆
1.对角互补的四边形的顶点共圆。
2.外角等于内对角的四边形内接于圆。
3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。
4.同斜边的直角三角形的顶点共圆。
5.到顶点距离相等的各点共圆
‘柒’ 如何写证明题的步骤方法
(1)理解题意:分清命题的条件(已知),结论(求证);
(2)根据题意,画出图形;
(3)结合图形,用符号语言写出“已知” 和“求证” ;
(4)分析题意,探索证明思路(由“因” 导“果” , 执“果” 索“因” );
(5)依据思路,运用数学符号和数学语言条理...”
‘捌’ 如何做数学证明题方法
做证明题要练就一定的步骤和思路.首先认真读题,题干中的每个重要条件都要读得很懂.做辅助线也很关键,有时一道题能否解答出来或者解题时间都很大程度上依赖于辅助线的做法.基础理论知识也需夯实.另外需要特别注意要求证的结论.从结论出发,结合已掌握的理论知识,去寻找方法.解题步骤往往和思维路径是相反的.不要为了做题而做题,一定要善于总结方法和题型.这样才能保证以后遇到的题目,拿到手后知道大体的解题方向,稳中求胜!加油吧!希望这些能帮到你.,5,