导航:首页 > 数字科学 > 小学数学学得数量关系式有哪些

小学数学学得数量关系式有哪些

发布时间:2023-02-03 17:11:57

⑴ 数量关系式有哪些

1、每份数×份数=总数

总数÷每份数=份数

总数÷份数=每份数

2、1倍数×倍数=几倍数

几倍数÷1倍数=倍数

几倍数÷倍数=1倍数

3、速度×时间=路程

路程÷速度=时间

路程÷时间=速度

4、单价×数量=总价

总价÷单价=数量

总价÷数量=单价

5、工作效率×工作时间=工作总量

工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

6、加数+加数=和

和一个加数=另一个加数

7、被减数-减数=差

被减数-差=减数

差+减数=被减数

8、因数×因数=积

积÷一个因数=另一个因数

9、被除数÷除数=商

被除数÷商=除数

商×除数=被除数

10、总数÷总份数=平均数

⑵ 小学数学的数量关系式(我要所有的!!!超详细的!!!)快!!!~~

路程÷速度=时间
路程÷时间=速度
单价×数量=总价
总价÷单价=数量
总价÷数量=单价
工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
加数+加数=和
和-一个加数=另一个加数
被减数-减数=差
被减数-差=减数
差+减数=被减数
因数×因数=积
积÷一个因数=另一个因数
被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1
正方形
C周长
S面积
a边长
周长=边长×4
C=4a
2
正方体
V:体积
a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3
长方形
C周长
S面积
a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4
长方体
V:体积
s:面积
a:长
b:

h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5
三角形
s面积
a底
h高
面积=底×高÷2
s=ah÷2
三角形高=面积
×2÷底
三角形底=面积
×2÷高
6
平行四边形
s面积
a底
h高
面积=底×高
s=ah
7
梯形
s面积
a上底
b下底
h高
面积=(上底+下底)×高÷2
s=(a+b)×
h÷2
8
圆形
S面积
C周长

d=直径
r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9
圆柱体
v:体积
h:高
s;底面积
r:底面半径
c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10
圆锥体
v:体积
h:高
s;底面积
r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者
和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或
小数+差=大数)
植树问题
1
非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2
封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2

⑶ 小学三年级数学数量关系式是什么意思

常用的数量关系式

1、每份数×份数=总数,总数÷每份数=份数,总数÷份数=每份数。

2、1倍数×倍数=几倍数,几倍数÷1倍数=倍数,几倍数÷倍数=1倍数。

3、速度×时间=路程,路程÷速度=时间,路程÷时间=速度。

4、单价×数量=总价,总价÷单价=数量,总价÷数量=单价。

5、工作效率×工作时间=工作总量,工作总量÷工作效率=工作时间,工作总量÷工作时间=工作效率 。

6、加数+加数=和,和-一个加数=另一个加数。

7、被减数-减数=差,被减数-差=减数,差+减数=被减数。

8、因数×因数=积,积÷一个因数=另一个因数。

9、被除数÷除数=商,被除数÷商=除数,商×除数=被除数。

拓展资料:

小学数学图形计算公式

1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a。

2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a。

3 、长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab。

4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh。

5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高。

6 平行四边形 s面积 a底 h高 面积=底×高 s=ah。

7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2。

8 圆形 S面积 C周长 π d=直径 r=半径 (1)周长=直径×π=2×π×半径 C=πd=2πr (2)面积=半径×半径×π。

9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长。

(1)侧面积=底面周长×高。

(2)表面积=侧面积+底面积×2。

(3)体积=底面积×高 。

(4)体积=侧面积÷2×半径。

10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数。

⑷ 小学数学应用题中常见的数量关系分类归纳

在小学教学基本类型应用题的数量关系中,可分为十一种:加法2种;减法3种;乘法2种;除法4种。现分述如下:
一、加法的种类:(2种)
1.已知一部分数和另一部分数,求总数。
例:小明家养灰兔8只,养白兔4只。一共养兔多少只?
想:已知一部分数(灰兔8只)和另一部分数(白兔4只)。求总数。
列式:8+4=12(只)答:(略)
2.已知小数和相差数,求大数。
例:小利家养白兔4只,灰兔比白兔多3只。灰兔有多少
只?
想:已知小数(白兔4只)和相差和(灰兔比白兔多3只),求大数。(灰兔的只数。)
列式:4+3=7(只)
答:(略)
二、减法有3种:
1.已知总数和其中一部分数,求另一部分数。
例:小丽家养兔12只,其中有白兔8只,其余的是灰兔,灰兔有多少只?
想:已知总数(12只),和其中一部分数(白兔8只),求另一部分数(灰兔有多少只?)
列式:12—8=4(只)
2.已知大数和相差数,求小数。
例:小强家养白兔8只,养的白兔比灰兔多3只。养灰兔多少只?
想:已知大数(白兔8只)和相差数(白兔比灰兔多3只),求小数(灰兔有多少只?)
列式:8-3=5(只)
3.已知大数和小数,求相差数。
例:小勇家养白兔8只,灰兔5只。白兔比灰兔多多少只?
想:已知大数(白兔8只)和小数(灰兔5只),求相差数。(白兔比灰兔多多少只?)
列式:8-5=3(只)
三、乘法有2种:
1.已知每份数和份数。求总数。
例:小利家养了6笼兔子,每笼4只。一共养兔多少只?
想:已知每份数(4只)和份数(6笼),求总数(一共养兔多少只?)也就是求6个4是多少
。用乘法计算。
列式:4×6=24(只)
本类应用题值得一提的是,一定要学生分清份数与每份数两者关系,计算时一定不要列反题。不得改变两者关系。
即:每份数×份数=总数。
决不可以列式:份数×每份数=总数。
2.求一个数的几倍是多少?
例:白兔有8只,灰兔的只数是白兔的2倍。灰兔有多少只?
想:白兔有8只,灰兔的只数是白兔的2倍,也就是说:灰兔有白兔只数两个那么多,就是求2个8只是多少?
列式:8×2=16(只)
四、除法有4种:
1.已知总数和份数,求每份数。
例:小强有15个苹果,平均放在3个盘子里,平均每盘放几个苹果?
想:已知总数(15个),份数(放3盘)。求每份数(每盘放几个?)也就是把15平均分成3份,求每份是多少。
列式:15÷3=5(个)
2.已知总数和每份数,求份数。
例:小强有15个苹果,每5个放一盘,可以放几盘?
想:因为已知总数(15个苹果)和每份数(5个放一盘)求可以放几盘?也就是看25里面有几个5,就可以放几盘?
列式:15÷5=3(盘)
3.求一个数是另一个数的几倍。
例:小勇有15个苹果,有5个梨,苹果的个数是梨的几倍?
想:看苹果的个数里面有几个梨的个数,就是梨的几倍。即求一个数是另一个数的几倍。
列式:15÷5=3
4.已知一个数的几倍是多少,求这个数。(用除法来计算。)

⑸ 急求小学数学应用题的数量关系式(需详细)

3典型应用题
具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。
(1)平均数问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。
加权平均数:已知两个以上若干份的平均数,求总平均数是多少。
数量关系式 (部分平均数×权数)的总和÷(权数的和)=加权平均数。
差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。
数量关系式:(大数-小数)÷2=小数应得数 最大数与各数之差的和÷总份数=最大数应给数 最大数与个数之差的和÷总份数=最小数应得数。
例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。
分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为 100 ,所用的时间为 ,汽车从乙地到甲地速度为 60 千米 ,所用的时间是 ,汽车共行的时间为 + = , 汽车的平均速度为 2 ÷ =75 (千米)

(2) 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。
根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。
一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”
两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”
正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。
反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。
解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。
数量关系式:单一量×份数=总数量(正归一)
总数量÷单一量=份数(反归一)
例 一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米 ,需要多少天?
分析:必须先求出平均每天织布多少米,就是单一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)

(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。
特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。
数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量 单位数量×单位个数÷另一个单位数量= 另一个单位数量。
例 修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米?
分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。 80 0 × 6 ÷ 4=1200 (米)

(4) 和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。
解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。
解题规律:(和+差)÷2 = 大数 大数-差=小数
(和-差)÷2=小数 和-小数= 大数
例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?
分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 - 87=7 (人)

(5)和倍问题:已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。
解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。
解题规律:和÷倍数和=标准数 标准数×倍数=另一个数
例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?
分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 。
列式为( 115-7 )÷( 5+1 ) =18 (辆), 18 × 5+7=97 (辆)

(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。
解题规律:两个数的差÷(倍数-1 )= 标准数 标准数×倍数=另一个数。
例 甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?
分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式( 63-29 )÷( 3-1 ) =17 (米)…乙绳剩下的长度, 17 × 3=51 (米)…甲绳剩下的长度, 29-17=12 (米)…剪去的长度。

(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
解题关键及规律:
同时同地相背而行:路程=速度和×时间。
同时相向而行:相遇时间=速度和×时间
同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。
同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。
例 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙?
分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。
已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。列式 2 8 ÷ ( 16-9 ) =4 (小时)

(8)流水问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。
船速:船在静水中航行的速度。
水速:水流动的速度。
顺水速度:船顺流航行的速度。
逆水速度:船逆流航行的速度。
顺速=船速+水速
逆速=船速-水速
解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。 解题时要以水流为线索。
解题规律:船行速度=(顺水速度+ 逆流速度)÷2
流水速度=(顺流速度逆流速度)÷2
路程=顺流速度× 顺流航行所需时间
路程=逆流速度×逆流航行所需时间
例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米?
分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。已知顺水速度和水流 速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。列式为 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小时) 28 × 5=140 (千米)。

(9) 还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。
解题关键:要弄清每一步变化与未知数的关系。
解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。
根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。
解答还原问题时注意观察运算的顺序。若需要先算加减法,后算乘除法时别忘记写括号。
例 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人?
分析:当四个班人数相等时,应为 168 ÷ 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。四班原有人数列式为 168 ÷ 4-2+3=43 (人)
一班原有人数列式为 168 ÷ 4-6+2=38 (人);二班原有人数列式为 168 ÷ 4-6+6=42 (人) 三班原有人数列式为 168 ÷ 4-3+6=45 (人)。

(10)植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。
解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。
解题规律:沿线段植树
棵树=段数+1 棵树=总路程÷株距+1
株距=总路程÷(棵树-1) 总路程=株距×(棵树-1)
沿周长植树
棵树=总路程÷株距
株距=总路程÷棵树
总路程=株距×棵树
例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。
分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50 ×( 301-1 )÷( 201-1 ) =75 (米)

(11 )盈亏问题:是在等分除法的基础上发展起来的。 他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。
解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。
解题规律:总差额÷每人差额=人数
总差额的求法可以分为以下四种情况:
第一次多余,第二次不足,总差额=多余+ 不足
第一次正好,第二次多余或不足 ,总差额=多余或不足
第一次多余,第二次也多余,总差额=大多余-小多余
第一次不足,第二次也不足, 总差额= 大不足-小不足
例 参加美术小组的同学,每个人分的相同的支数的色笔,如果小组 10 人,则多 25 支,如果小组有 12 人,色笔多余 5 支。求每人 分得几支?共有多少支色铅笔?
分析:每个同学分到的色笔相等。这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 25-5 ) =20 支 , 2 个人多出 20 支,一个人分得 10 支。列式为( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。

(12)年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。
解题关键:年龄问题与和差、和倍、 差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。
例 父亲 48 岁,儿子 21 岁。问几年前父亲的年龄是儿子的 4 倍?
分析:父子的年龄差为 48-21=27 (岁)。由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是( 4-1 )倍。这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍。列式为: 21( 48-21 )÷( 4-1 ) =12 (年)

(13)鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题
解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。
解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数
兔子只数=(总腿数-2×总头数)÷2
如果假设全是兔子,可以有下面的式子:
鸡的只数=(4×总头数-总腿数)÷2
兔的头数=总头数-鸡的只数
例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?
兔子只数 ( 170-2 × 50 )÷ 2 =35 (只)
鸡的只数 50-35=15 (只)

⑹ 小学常用的数量关系式大全

小学数量关系式大全如下:

1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数。

2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数。

3、速度×时间=路程路程÷速度=时间路程÷时间=速度。

4、单价×数量=总价总价÷单价=数量总价÷数量=单价。

5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率。

6、加数+加数=和和-一个加数=另一个加数。

7、被减数-减数=差被减数-差=减数差+减数=被减数。

8、被除数÷除数=商被除数÷商=除数商×除数=被除数。

9、正方形(C:周长 S:面积 a:边长):周长=边长×4 , C=4a,面积=边长×边长。

10、正方体 (V:体积 a:棱长 ):表面积=棱长×棱长×6 , S表=a×a×6 ,体积=棱长×棱长×棱长 , V=a×a×a。

11、长方形( C:周长 S:面积 a:边长):周长=(长+宽)×2C=2(a+b) ,面积=长×宽, S=ab。

⑺ 小学数学的所有数量关系式

本金*利率=利息
单价*数量=总价
工效*时间=工作总量
单产量*数量=总产量
每份数*份数=总数
速度=时间*路程
本金*利率*时间=利息
植树问题中的主要数量关系是:间隔数×每个间隔的米数=一共的米数;
锯木头问题的主要数量关系是:锯的次数×锯一次用的时间=一共要的时间;
爬楼梯问题中的数量关系式是:楼梯的级数÷每两层楼之间楼梯的级数=楼梯的段数。
敲钟问题的主要关系式是:等待的次数×等待一次用的时间=一共用的时间
成活率=成活棵数/总棵数
合格率=合格/总
本金*利率=利息
单价*数量=总价
工效*时间=工作总量
单产量*数量=总产量
每份数*份数=总数
速度=时间*路程
本金*利率*时间=利息
植树问题中的主要数量关系是:间隔数×每个间隔的米数=一共的米数;
锯木头问题的主要数量关系是:锯的次数×锯一次用的时间=一共要的时间;
爬楼梯问题中的数量关系式是:楼梯的级数÷每两层楼之间楼梯的级数=楼梯的段数。
敲钟问题的主要关系式是:等待的次数×等待一次用的时间=一共用的时间
成活率=成活棵数/总棵数
合格率=合格/总
公式:
1
每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2
1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3
速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4
单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5
工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6
加数+加数=和
和-一个加数=另一个加数
7
被减数-减数=差
被减数-差=减数
差+减数=被减数
8
因数×因数=积
积÷一个因数=另一个因数
9
被除数÷除数=商
被除数÷商=除数
商×除数=被除数

⑻ 小学数学数量关系式10个, 例:积=因数+因数

1.加数+加数=和;和—一个加数=另一个加数。
2.被减数—减数=差;被减数—差=减数;差+减数=被减数。
3.因数X因数=积;积÷一个因数=另一个因数。
4.被除数÷除数=商;被除数÷商=除数;商×除数=被除数。
5.长方形的周长=(长+宽)X2;C=(a+b)X2。
6.长方形的面积=长X宽;S=ab。
7.正方形的周长=边长X4;C=4a。
8.正方形的面积=边长X边长;S=axa。
9.三角形的面积=底X高÷2;S=ah÷2。
10.梯形的面积=(上底+下底)X高÷2;S=(a+b)h÷2。
11.圆的周长=圆周率X直径=圆周率X半径X2=2πr。
12.圆的面积=圆周率X半径X半径。

⑼ 小学数学常见的数量关系

1、单价×数量=总价

2、单产量×数量=总产量

3、速度×时间=路程

⑽ 小学三年级数学数量关系式是什么意思

常用的数量关系有如下几种
1、速度乘以时间等于路程
2、单价乘以数量等于总价
3、加数加加数=和
4、被减数减减数=差

阅读全文

与小学数学学得数量关系式有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:705
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1318
华为手机家人共享如何查看地理位置 浏览:1010
一氧化碳还原氧化铝化学方程式怎么配平 浏览:848
数学c什么意思是什么意思是什么 浏览:1369
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1350
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1023
大学物理实验干什么用的到 浏览:1449
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:832
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1608
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1452
数学中的棱的意思是什么 浏览:1017