导航:首页 > 数字科学 > 初一上数学知识点总结怎么写

初一上数学知识点总结怎么写

发布时间:2023-02-05 12:38:45

1. 初一数学上册知识点总结

初一数学上册知识点总结1

代数初步知识

1. 代数式:用运算符号+ - 连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.

2.列代数式的几个注意事项:

(1)数与字母相乘,或字母与字母相乘通常使用 乘,或省略不写;

(2)数与数相乘,仍应使用乘,不用 乘,也不能省略乘号;

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a5应写成5a;

(4)带分数与字母相乘时,要把带分数改成假分数形式,如a 应写成 a;

(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3a写成 的形式;

(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .

3.几个重要的代数式:(m、n表示整数)

(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;

(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;

(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;

(4)若b0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .

初一数学上册知识点总结2

一、方程的有关概念

1.方程:含有未知数的等式就叫做方程.

2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.

3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.

注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.

二、等式的性质

等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.

等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c

等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

三、移项法则: 把等式一边的某项变号后移到另一边,叫做移项.

四、去括号法则

1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.

五、解方程的一般步骤

1. 去分母(方程两边同乘各分母的最小公倍数)

2. 去括号(按去括号法则和分配律)

3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

4. 合并(把方程化成ax = b (a≠0)形式)

5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).

六、用方程思想解决实际问题的一般步骤

1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.

2. 设:设未知数(可分直接设法,间接设法)

3. 列:根据题意列方程.

4. 解:解出所列方程.

5. 检:检验所求的解是否符合题意.

6. 答:写出答案(有单位要注明答案)

初一数学上册知识点总结3

(1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

(2)有理数的分类: ① 整数 ②分数

(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)自然数 0和正整数;a0 a是正数;a0 a是负数;

a≥0 a是正数或0 a是非负数;a≤ 0 ? a是负数或0 a是非正数.

有理数比大小:

(1)正数的绝对值越大,这个数越大;

(2)正数永远比0大,负数永远比0小;

(3)正数大于一切负数;

(4)两个负数比大小,绝对值大的反而小;

(5)数轴上的两个数,右边的数总比左边的数大;

(6)大数-小数 0,小数-大数 0.

初一数学上册知识点总结4

第一章:丰富的图形世界

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。

2、点、线、面、体

①几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

②点动成线,线动成面,面动成体。

3、生活中的立体图形

生活中的立体图形(按名称分)

柱:

①圆柱

②棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……

锥:

①圆锥

②棱锥

4、棱柱及其有关概念:

棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

5、正方体的平面展开图:

11种(经常考:考试形式:展开的图形能否围成正方体;正方体对面图案)

6、截一个正方体:

用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

7、三视图:

物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

第二章:有理数及其运算

1、有理数的分类

①正有理数

有理数{ ②零

③负有理数

有理数{ ①整数

②分数

2、相反数:

只有符号不同的两个数叫做互为相反数,零的`相反数是零

3、数轴:

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

4、倒数:

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和—1。零没有倒数。

5、绝对值:

在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。

若|a|=a,则a≥0;

若|a|=-a,则a≤0。

正数的绝对值是它本身;

负数的绝对值是它的相反数;

0的绝对值是0。

互为相反数的两个数的绝对值相等。

6、有理数比较大小:

正数大于0,负数小于0,正数大于负数;

数轴上的两个点所表示的数,右边的总比左边的大;

两个负数,绝对值大的反而小。

7、有理数的运算:

①五种运算:加、减、乘、除、乘方

多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。

有理数加法法则:

同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值值相等时和为0;

绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

一个数同0相加,仍得这个数。

互为相反数的两个数相加和为0。

有理数减法法则:

减去一个数,等于加上这个数的相反数!

有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积仍为0。

有理数除法法则:

两个有理数相除,同号得正,异号得负,并把绝对值相除。

0除以任何非0的数都得0。

注意:0不能作除数。

有理数的乘方:求n个相同因数a的积的运算叫做乘方。

正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。

②有理数的运算顺序

先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。

③运算律(5种)

加法交换律

加法结合律

乘法交换律

乘法结合律

乘法对加法的分配律

8、科学记数法

一般地,一个大于10的数可以表示成a×

10n的形式,其中1≦n<10,n是正整数,这种记数方法叫做科学记数法。(n=整数位数—1)

第三章:整式及其加减

1、代数式

用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

注意:

①代数式中除了含有数、字母和运算符号外,还可以有括号;

②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;

③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

代数式的书写格式:

①代数式中出现乘号,通常省略不写,如vt;

②数字与字母相乘时,数字应写在字母前面,如4a;

③带分数与字母相乘时,应先把带分数化成假分数。

④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

⑤在代数式中出现除法运算时,一般写成分数的形式;注意:分数线具有“÷”号和括号的双重作用。

⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面。

2、整式:单项式和多项式统称为整式。

①单项式:

都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。

注意:

单独的一个数或一个字母也是单项式;

单独一个非零数的次数是0;

当单项式的系数为1或—1时,这个“1”应省略不写,如—ab的系数是—1,a3b的系数是1。

②多项式:

几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。

③同类项:

所含字母相同,并且相同字母的指数也相同的项叫做同类项。

注意:

①同类项有两个条件:a。所含字母相同;b。相同字母的指数也相同。

②同类项与系数无关,与字母的排列顺序无关;

③几个常数项也是同类项。

4、合并同类项法则:

把同类项的系数相加,字母和字母的指数不变。

5、去括号法则

①根据去括号法则去括号:

括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。

②根据分配律去括号:

括号前面是“+”号看成+1,括号前面是“—”号看成—1,根据乘法的分配律用+1或—1去乘括号里的每一项以达到去括号的目的。

6、添括号法则

添“+”号和括号,添到括号里的各项符号都不改变;添“—”号和括号,添到括号里的各项符号都要改变。

7、整式的运算:

整式的加减法:(1)去括号;(2)合并同类项。

第四章基本平面图形

1、线段、射线、直线

名称

表示方法

端点

长度

直线

直线AB(或BA)

直线l

无端点

无法度量

射线

射线OM

1个

无法度量

线段

线段AB(或BA)

线段l

2个

可度量长度

2、直线的性质

①直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)

②过一点的直线有无数条。

③直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

3、线段的性质

①线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)

②两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

③线段的大小关系和它们的长度的大小关系是一致的。

4、线段的中点:

点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。

5、角:

有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。

6、角的表示

角的表示方法有以下四种:

①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

7、角的度量

角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

1°=60’,1’=60”

8、角的平分线

从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

9、角的性质

①角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

②角的大小可以度量,可以比较,角可以参与运算。

10、平角和周角:

一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。

终边继续旋转,当它又和始边重合时,所形成的角叫做周角。

11、多边形:

由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。

连接不相邻两个顶点的线段叫做多边形的对角线。

从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n—3)条对角线,把这个n边形分割成(n—2)个三角形。

12、圆:

平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。

固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。

圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;

由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。

顶点在圆心的角叫做圆心角。

第五章一元一次方程

1、方程

含有未知数的等式叫做方程。

2、方程的解

能使方程左右两边相等的未知数的值叫做方程的解。

3、等式的性质

①等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。

②等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。

4、一元一次方程

只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。

5、移项:

把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项。

6、解一元一次方程的一般步骤:

①去分母

②去括号

③移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)

④合并同类项

⑤将未知数的系数化为1

第六章数据的收集与整理

1、普查与抽样调查

为了特定目的对全部考察对象进行的全面调查,叫做普查。

其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。

从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。

2、扇形统计图

扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)

圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)

3、频数直方图

频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。

4、各种统计图的特点

条形统计图:能清楚地表示出每个项目的具体数目。

折线统计图:能清楚地反映事物的变化情况。

扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

初一数学上册知识点总结5

1、 我们把实物中抽象的各种图形统称为几何图形(geometric figure).

2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure).

3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure).

4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图(net).

5、几何体简称为体(solid).

6、包围着体的是面(surface),面有平的面和曲的面两种.

7、面与面相交的地方形成线(line),线和线相交的地方是点(point).

8、点动成面,面动成线,线动成体.

9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线(公理).

10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection).

11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center).

12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短.简单说成:两点之间,线段最短.(公理)

13、连接两点间的线段的长度,叫做这两点的距离(distance).

14、角∠(angle)也是一种基本的几何图形.

15、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″.

16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angular bisector).

17、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementaryangle),即其中的每一个角是另一个角的余角.

18、如果两个角的和等于180°(平角),就说这两个角互为补角(supplementaryangle),即其中一个角是另一个角的补角

19、等角的补角相等,等角的余角相等.

2. 七年级数学上册知识点总结归纳

没有加倍的勤奋,就没有才能,也没有天才。天才其实就是可以持之以恒的人。勤能补拙是良训,一分辛苦一分才,勤奋一直都是学习通向成功的最好捷径。下面是我给大家整理的一些 七年级数学 的知识点,希望对大家有所帮助。

七年级数学知识点

整式的加减

1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。

2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;

单项式中所有字母指数的和,叫单项式的次数.

3.多项式:几个单项式的和叫多项式.

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数项的次数叫多项式的次数;

5..

6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.

7.合并同类项法则:系数相加,字母与字母的指数不变.

8.去(添)括号法则:

去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.

9.整式的加减:一找:(划线);二“+”(务必用+号开始合并)三合:(合并)

10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).

一元一次方程

1.等式:用“=”号连接而成的式子叫等式.

2.等式的性质:

等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;

等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.

3.方程:含未知数的等式,叫方程.

4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!

5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.

6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).

第一学期初一数学复习资料

一几何图形

几何学:数学中以空间形式为研究对象的分支叫做几何学。

从实物中抽象出的各种图形统称为几何图形。几何图形可分为立体图形和平面图形;各个部分不都在同一平面内的几何图形叫做立体图形,各个部分都在同一平面内的几何图形叫做平面图形。

1、几何图形的投影问题

每一种几何体从不同的方向去看它,可以得到不同的简单平面几何图形。实际上投影所得到的简单平面几何图形是被投影几何体可遮挡视线的部分在平面内所留下的影子。2、立体图形的展开问题

将立体图形的表面适当剪开,一、点、线、面、体

1、点、线、面、体的概念点动成线,线动成面,面动成体由平面和曲成围成一个几何体2、点、线、面和体之间的关系(1)点动成线、线动成面、面动成体;

(2)体是由面组成、面与 面相 交成线、线与线相交成点;

二、线段、射线、直线1、线段、射线、直线的定义

(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。线段可以量出长度。(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。射线无法量出长度。(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。直线无法量出长度。概念剖析:①线段有两个端点,射线有一个端点,直线没有端点;

②“线段可以量出长度”,即线段有明确的长度,“射线和直线都无法量出其长度”,即射线和直线既没有明确的长度,

也没有射线与射线、直线与直线、射线与直线之间的长短比较之说;

③线段只有长短之分,而没有大小之别,射线和直线既没有长短之分,也没有大小之别;例1、下列说法正确的是()

A、5㎝长的直线比3㎝长的直线要长2㎝;B、线段向两个方向无限延伸就形成了直线;

C、直线和射线都是不可度量的,所以它们都无法表示;D、直线AB、射线AB和线段AB表示的都是同一几何图形;

2、线段、射线、直线的表示 方法

(1)线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。(2)射线的表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。

(3)直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。

概念剖析:①将线段的两个端点位置颠倒,得到的新线段与原来的线段是同一线段,即线段AB与线段BA是同一线段;

②将表示射线的两个点位置颠倒,得到的新射线与原来的射线不是同一射线,即射线AB与射线BA不是同一射线,因为它们的端点和方向不同;

③将表示直线的两个点位置颠倒,得到的新直线与原来的直线是同一直线,即直线AB与直线BA是同一直线;④识别图中线段的条数要把握一点:只要有一个端点不相同,就是不同的线段;⑤识别图中射线的条数要把握两点:端点和方向缺一不可;

初一新生必看:数学 学习方法 指导

1.做好预习:单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。坚持预习,找到疑点,变被动学习为主动学习,能大大提高学习效率噢,兴趣是的老师嘛。

2.认真听课:听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点(记住预习中的疑点了吗?更要听仔细了),听例题的解法和要求,听蕴含的数学思想和方法,听课堂小结。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题,大胆猜想。记,当然是指课堂笔记了,不是记得多就是有效的知道吗?影响了听课可就不如不记了,记什么,什么时候记,可是有学问的哩,记方法,记技巧,记疑点,记要求,记注意点,记住课后一定要整理笔记。

3.认真解题:课堂练习是最及时最直接的反馈,一定不能错过的,不要急于完成作业,要先看看你的 笔记本 ,回顾学习内容,加深理解,强化记忆,很重要噢。

4.及时纠错:课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,审题出问题了吗?概念模糊了吗?时间紧没来得及?不会做吗?切忌不要动不动就以粗心放过自己(形成习惯可就麻烦了),如果思路正确而计算出错,及时订正,必要时强化相关计算的训练。概念模糊和审题出错都说明你的学习容易出现似懂非懂却还不自知的状态,这可是学习数学的大忌,要坚决克服。至于不会做,当然要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。

5.学会 总结 :大人们常说,数学是一环扣一环,这意思是说知识间是紧密相关的,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,学习的目的性,必要性,知识性做到了然于心,融会贯通,解题时就能做到入手快,方法直接简单,即使平时课堂上没练到的题型,也能得心应手,即举一反三。

6.学会管理:管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷,这可是大考复习时最有用的资料知道吗?


七年级数学上册知识点总结归纳相关 文章 :

★ 初一数学上册知识点归纳

★ 初一数学上册知识点汇总归纳

★ 初一人教版数学上册知识点总结归纳

★ 初一上册数学知识点归纳整理

★ 初一数学上册知识点

★ 初一数学上册知识点总结

★ 初中七年级数学知识点归纳整理

★ 七年级数学上册知识点汇总

★ 初一数学上册重点知识整理

★ 七年级数学上册知识归纳

3. 初一数学知识点总结上册

初一数学上册的知识点包括有理数、相反数、绝对值、角的相关知识点等等,接下来分享有关初一数学上册的重要知识点,供参考。

有理数

1.定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。

2.数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。

3.相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。

4.绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

5.有理数的加减法

同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

6.有理数的乘法

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积为0.例:0×1=0

7.有理数的除法

除以一个不为0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。0除

以任何一个不为0的数,都得0。

8.有理数的乘方

求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。其中,a叫做底数,n叫做指数。当aⁿ看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。

相反数和绝对值

1.相反数:只有符号不同的两个数互为相反数,0的相反数是0。在数轴上位于原点两侧且离原点距离相等。

2.绝对值的几何意义:一个数所对应的点离原点的距离叫做该数的绝对值。

3.绝对值的代数定义:(1)一个正数的绝对值是它本身;(2)一个负数数的绝对值是它的相反数;(3)0的绝对值是0;(4)|a|大于或者等于0。

4.比较两个数的大小关系

在数轴上表示有理数,它们从左到右的顺序,就是从大到小的顺序,即左边的数小于右边的数。由此可知:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小。

角的相关知识点

1.角:角是由两条有公共端点的射线组成的几何对象。

2.角的度量单位:度、分、秒

3.顶点:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点

4.角的比较:

(1)角可以看成是由一条射线绕着他的端点旋转而成的。

(2)平角和周角:一条射线绕着他的端点旋转,当始边和终边成一条直线时,所成的角叫平角。当它又和始边重合的时候,所成的角角周角。平角等于108度,周角等于360度,直角等于90度。

(3)平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

5.余角和补角:

(1)余角:如果两个角的和是90度,那么称这两个角“互为余角”,简称“互余”。

性质:等角的余角相等。

(2)补角:如果两个角的和是180度,那么称这两个角“互为补角”,简称“互补”。

性质:等角的补角相等。

4. 初一数学上册知识点总结

= 总结 所学内容,进行学法的理性 反思 ,强化并进行迁移运用,在训练中掌握学法。下面给大家带来一些关于初一数学上册知识点总结,希望对大家有所帮助。

初一数学上册知识点1

正负数

1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数

1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴

1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)

2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(四)有理数的加减法

1.先定符号,再算绝对值。

2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。5.a?b=a+(?b)减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)

1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

2.乘积是1的两个数互为倒数。

3.乘法交换律:ab=ba

4.乘法结合律:(ab)c=a(bc)

5.乘法分配律:a(b+c)=ab+ac

(六)有理数除法

1.先将除法化成乘法,然后定符号,最后求结果。

2.除以一个不等于0的数,等于乘这个数的倒数。

3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。(七)乘方1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。3.同底数幂相乘,底不变,指数相加。

4.同底数幂相除,底不变,指数相减。

(八)有理数的加减乘除混合运算法则

1.先乘方,再乘除,最后加减。

2.同级运算,从左到右进行。

3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

(九)科学记数法、近似数、有效数字。

初一数学上册知识点2

1.有理数:

(1)凡能写成 形式的数,都是有理数,整数和分数统称有理数.

注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;?不是有理数;

(2)有理数的分类: ① ②

(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)自然数? 0和正整数; a>0 ? a是正数; a<0 ? a是负数;

a≥0 ? a是正数或0 ? a是非负数; a≤ 0 ? a是负数或0 ? a是非正数.

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

(3)相反数的和为0 ? a+b=0 ? a、b互为相反数.

(4)相反数的商为-1.

(5)相反数的绝对值相等

4.绝对值:

(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;

注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2) 绝对值可表示为: 或 ;

(3) ; ;

(4) |a|是重要的非负数,即|a|≥0;

5.有理数比大小:

(1)正数永远比0大,负数永远比0小;

(2)正数大于一切负数;

(3)两个负数比较,绝对值大的反而小;

(4)数轴上的两个数,右边的数总比左边的数大;

(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差, 绝对值越小,越接近标准。

6.倒数:乘积为1的两个数互为倒数;

注意:0没有倒数; 若ab=1? a、b互为倒数; 若ab=-1? a、b互为负倒数.

等于本身的数汇总:

相反数等于本身的数:0

倒数等于本身的数:1,-1

绝对值等于本身的数:正数和0

平方等于本身的数:0,1

立方等于本身的数:0,1,-1.

7. 有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

8.有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).

9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。

11 有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .(简便运算)

12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .

13.有理数乘方的法则:(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;

14.乘方的定义:(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

(3)a2是重要的非负数,即a2≥0;若a2+|b|=0 ? a=0,b=0;

(4)据规律 底数的小数点移动一位,平方数的小数点移动二位.

15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.

16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

17.混合运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤。

18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种 方法 ,但不能用于证明.常用于填空,选择。

初一数学上册知识点3

实数:

—有理数与无理数统称为实数。

有理数:

整数和分数统称为有理数。

无理数:

无理数是指无限不循环小数。

自然数:

表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。

数轴:

规定了圆点、正方向和单位长度的直线叫做数轴。

相反数:

符号不同的两个数互为相反数。

倒数:

乘积是1的两个数互为倒数。

绝对值:

数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。

数学定理公式

有理数的运算法则

⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

⑵减法法则:减去一个数,等于加上这个数的相反数。

⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。

⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。

角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线。

数学第一章相交线

一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角。邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角。

二、对顶角:是两条直线相交形成的。两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。

初一数学上册知识点4

多项式除以单项式

一、单项式

1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式

1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数的项的次数,叫做这个多项式的次数。

三、整式

1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减

1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:

(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:

(1)代数式化简。

(2)代入计算

(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

五、同底数幂的乘法

1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。

2、底数相同的幂叫做同底数幂。

3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。

4、此法则也可以逆用,即:am+n=am﹒an。

5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。

六、幂的乘方

1、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。

2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n=amn。

3、此法则也可以逆用,即:amn=(am)n=(an)m。

七、积的乘方

1、积的乘方是指底数是乘积形式的乘方。

2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。

3、此法则也可以逆用,即:anbn=(ab)n。

八、三种“幂的运算法则”异同点

1、共同点:

(1)法则中的底数不变,只对指数做运算。

(2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。

(3)对于含有3个或3个以上的运算,法则仍然成立。

2、不同点:

(1)同底数幂相乘是指数相加。

(2)幂的乘方是指数相乘。

(3)积的乘方是每个因式分别乘方,再将结果相乘。

九、同底数幂的除法

1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。

2、此法则也可以逆用,即:am-n=am÷an(a≠0)。

十、零指数幂

1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。

十一、负指数幂

1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:

注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。

十二、整式的乘法

(一)单项式与单项式相乘

1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

2、系数相乘时,注意符号。

3、相同字母的幂相乘时,底数不变,指数相加。

4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。

5、单项式乘以单项式的结果仍是单项式。

6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

(二)单项式与多项式相乘

1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。

2、运算时注意积的符号,多项式的每一项都包括它前面的符号。

3、积是一个多项式,其项数与多项式的项数相同。

4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。

(三)多项式与多项式相乘

1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。

2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。

3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。

4、运算结果中有同类项的要合并同类项。

5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。

十三、平方差公式

1、(a+b)(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。

2、平方差公式中的a、b可以是单项式,也可以是多项式。

3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。

4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成

(a+b)?(a-b)的形式,然后看a2与b2是否容易计算。


初一数学上册知识点总结相关 文章 :

★ 初一数学上册知识点归纳

★ 初一上册数学知识点归纳整理

★ 初一数学上册重点知识整理

★ 七年级上册数学知识点总结三篇

★ 七年级上册数学月考知识点整理

★ 七年级英语上册各单元知识点汇总

★ 初一年级上册数学的21个热门知识点

★ 初一上册数学知识点手抄报

★ 初一上册数学合并同类项教案

★ 初中七年级上册数学《整式》教案优质范文五篇

5. 初一上册数学知识点归纳整理

数学的学习在于练习,勤加练习能帮助我们打开思维的逻辑,下面是我给大家带来的初一上册数学知识点归纳整理,希望能够帮助到大家!

初一上册数学知识点归纳整理

第一章有理数

(一)正负数

1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数

1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴

1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)

2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(四)有理数的加减法

1.先定符号,再算绝对值。

2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5.a-b=a+(-b)减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)

1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

2.乘积是1的两个数互为倒数。

3.乘法交换律:ab=ba

4.乘法结合律:(ab)c=a(bc)

5.乘法分配律:a(b+c)=ab+ac

(六)有理数除法

1.先将除法化成乘法,然后定符号,最后求结果。

2.除以一个不等于0的数,等于乘这个数的倒数。

3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。

(七)乘方

1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)

2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

3.同底数幂相乘,底不变,指数相加。

4.同底数幂相除,底不变,指数相减。

(八)有理数的加减乘除混合运算法则

1.先乘方,再乘除,最后加减。

2.同级运算,从左到右进行。

3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

(九)科学记数法、近似数、有效数字。

第二章整式(一)整式

1.整式:单项式和多项式的统称叫整式。

2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。

3.系数;一个单项式中,数字因数叫做这个单项式的系数。

4。次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

5.多项式:几个单项式的和叫做多项式。

6.项:组成多项式的每个单项式叫做多项式的项。

7.常数项:不含字母的项叫做常数项。

8.多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。

9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

(二)整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。

1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变

整理了知识点,我们来看看相关的练习题吧。根据做题的情况分析有哪些知识点是自己还没有掌握的。

1,从数轴上看,0是()

A,最小整数B,最大的负数C,最小的有理数D最小的非负数

2,一个数的相反数小于它本身,这个数是()

A,非负数B,正数C,0D,负数

3,冬季某天我国三个城市的最高气温分别是-10℃,1℃,-7℃,把它们从高到低排列正确的是()

A,-10℃,-7℃,1℃B,-7℃,-10℃,1℃C,1℃,-7℃,-10℃D,1℃,-10℃,-7℃

4,下列说法正确的有()

A,正数和负数统称为有理数B,有理数是指整数、分数、正有理数、负有理数和0五类C,一个有理数不是整数就是分数D,整数包括正整数和负整数

5,若a、b为有理数,a>0,b<0,且|a|<|b|,那么下列说法不正确的是()

A,若将数a、b在数轴上表示出来,则a在原点右侧,b在原点左侧。

B,因正数大于一切负数,所以a>b。

C,若将数a、b在数轴上表示出来,则数a与原点的距离比较b与原点的距离小。

D,在数轴上,表示a,|a|,b的点从左到右依次为a,b,|a|

6,在下列代数式:(1/2)ab,(a+b)/2,ab2+b+1,(3/x)+(2/y),x3+x2-3中,多项式有()A.2个B.3个C.4个D5个

7,多项式-23m2-n2是()A.二次二项式B.三次二项式C.四次二项式D五次二项式

8,下列说法正确的是()

A.3x2―2x+5的项是3x2,2x,5

B.(3/x)-(3/y)与2x2―2xy-5都是多项式

C.多项式-2x2+4xy的次数是3

D一个多项式的次数是6,则这个多项式中只有一项的次数是6

9,下列说法正确的是()

A.整式abc没有系数

B.(x/2)+(y/3)+(z/4)不是整式

C.-2不是整式

D.整式2x+1是一次二项式

10,下列代数式中,不是整式的是()

A、-3x2 B、(5a-4b)/7 C、(3a+2)/5x D、-2005

参考答案

1——5 DBCCD

6——10 BABDC

6. 七年级数学上册知识点总结

七年级数学上册知识点总结(通用8篇)
总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,它可以促使我们思考,为此要我们写一份总结。那么如何把总结写出新花样呢?下面是小编为大家整理的七年级数学上册知识点总结(通用8篇),欢迎大家分享。

七年级数学上册知识点总结 篇1
数轴
1、数轴的概念
规定了原点,正方向,单位长度的直线叫做数轴。
注意:(1)数轴是一条向两端无限延伸的直线;(2)原点、正方向、单位长度是数轴的三要素,三者缺一不
可;(3)同一数轴上的单位长度要统一;(4)数轴的三要素都是根据实际需要规定的。
2、数轴上的点与有理数的关系
(1)所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
(2)所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)
3、利用数轴表示两数大小
(1)在数轴上数的大小比较,右边的数总比左边的数大;
(2)正数都大于0,负数都小于0,正数大于负数;
(3)两个负数比较,距离原点远的数比距离原点近的数小。
4、数轴上特殊的(小)数
(1)最小的自然数是0,无的自然数;
(2)最小的正整数是1,无的正整数;
(3)的负整数是-1,无最小的负整数
5、a可以表示什么数
(1)a>0表示a是正数;反之,a是正数,则a>0;
(2)a
(3)a=0表示a是0;反之,a是0,,则a=0
七年级数学上册知识点总结 篇2
第一章 有理数
(一)正负数
1、正数:大于0的数。
2、负数:小于0的数。
3、0即不是正数也不是负数。
4、正数大于0,负数小于0,正数大于负数。
(二)有理数
1、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整数之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)
2、整数:正整数、0、负整数,统称整数。
3、分数:正分数、负分数。
(三)数轴
1、数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)
2、数轴的三要素:原点、正方向、单位长度。
3、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
4、绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数比较大小,绝对值大的反而小。
(四)有理数的加减法
1、先定符号,再算绝对值。
2、加法运算法则:同号相加,取相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。
3、加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。
4、加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5、 ab = a +(b) 减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)
1、同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
2、乘积是1的两个数互为倒数。
3、乘法交换律:ab= ba
4、乘法结合律:(ab)c = a (b c)
5、乘法分配律:a(b +c)= a b+ ac
(六)有理数除法
1、先将除法化成乘法,然后定符号,最后求结果。
2、除以一个不等于0的数,等于乘这个数的倒数。
3、两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。
(七)乘方
1、求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)
2、负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。
(八)有理数的加减乘除混合运算法则
1、先乘方,再乘除,最后加减。
2、同级运算,从左到右进行。
3、如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
(九)科学记数法、近似数、有效数字。
第二章 整式
(一)整式
1、整式:单项式和多项式的统称叫整式。
2、单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。
3、系数:一个单项式中,数字因数叫做这个单项式的系数。
4、次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。
5、多项式:几个单项式的和叫做多项式。
6、项:组成多项式的每个单项式叫做多项式的项。
7、常数项:不含字母的项叫做常数项。
8、多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。
9、同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。
10、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
(二)整式加减
整式加减运算时,如果遇到括号先去括号,再合并同类项。
1、去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
2、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变
第三章 一元一次方程
分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
(一)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫方程。
(二)一元一次方程:
1、一元一次方程:方程里只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。
2、解:求出的方程中未知数的值叫做方程的解。
(二)等式的性质
1、等式两边加(或减)同一个数(或式子),结果仍相等。
如果a= b,那么a± c= b± c
2、等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a= b,那么a c= b c;
如果a= b,(c0),那么a ?Mc = b ?M c。
(三)解方程的步骤
解一元一次方程的步骤:去分母、去括号、移项、合并同类项,未知数系数化为1。
1、去分母:把系数化成整数。
2、去括号
3、移项:把等式一边的某项变号后移到另一边。
4、合并同类项
5、系数化为1
第四章 图形认识初步
一、图形认识初步
1、几何图形:把从实物中抽象出来的各种图形的统称。
2、平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形。
3、立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形。
4、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
5、点,线,面,体
1图形是由点,线,面构成的。
2线与线相交得点,面与面相交得线。
3点动成线,线动成面,面动成体。
二、直线、线段、射线
1、线段:线段有两个端点。
2、射线:将线段向一个方向无限延长就形成了射线。射线只有一个端点。
3、直线:将线段的两端无限延长就形成了直线。直线没有端点。
4、两点确定一条直线:经过两点有一条直线,并且只有一条直线。
5、相交:两条直线有一个公共点时,称这两条直线相交。
6、两条直线相交有一个公共点,这个公共点叫交点。
7、中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。
8、线段的性质:两点的所有连线中,线段最短。(两点之间,线段最短)
9、距离:连接两点间的线段的长度,叫做这两点的距离。
三、角
1、角:有公共端点的两条射线组成的图形叫做角。
2、角的度量单位:度、分、秒。
3、角的度量与表示:
1角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。
2一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60进制。
4、角的比较:
1角也可以看成是由一条射线绕着他的端点旋转而成的。
2平角和周角:一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。平角等于180度。周角等于360度。直角等于90度。
3平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
4工具:量角器、三角尺、经纬仪。
5、余角和补角
1余角:两个角的和等于90度,这两个角互为余角。即其中每一个是另一个角的余角。
2补角:两个角的和等于180度,这两个角互为补角。即其中一个是另一个角的补角。
3补角的性质:等角的补角相等。
4余角的性质:等角的余角相等。
七年级数学上册知识点总结 篇3
1、用加、减、乘(乘方)、除等运算符号把数或表示数的字母连接而成的式子,叫做代数式。(注:单独一个数字或字母也是代数式)
2、代数式的写法:数学与字母相乘时,“×”号省略,数字写在字母前;字母与字母相乘时,相同字母写成幂的形式;数字与数字相乘时,“×”号不能省略;式中出现除法时,一般写成分数形式。式中出现带分数时,一般写成假分数形式。
3、分段问题书写代数式时要分段考虑,有单位时要考虑是否要();如:电费、水费、出租车、商店优惠。
4、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式、因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若1分母中不含有字母,2式子中含有加、减运算关系,也不是单项式、
单项式的系数:是指单项式中的数字因数;(不要漏负号和分母)
单项数的次数:是指单项式中所有字母的指数的和、(注意指数1)
5、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式、每个单项式称项,(其中不含字母的项叫常数项)多项式的次数是指多项式里次数最高项的次数(选代表);多项式的项是指在多项式中每一个单项式、特别注意多项式的项包括它前面的性质符号、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

7. 初一上册数学知识点总结归纳

初一数学是初中数学的基础,这篇文章我给大家总结归纳了初一上册数学课本的重要知识点,供同学们参考。

有理数

(1)定义:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。

(2)数轴:在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。

(3)相反数:相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。

(4)绝对值:绝对值是指一个数在数轴上所对应点到原点的距离。正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(5)有理数的加减法

同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

(6)有理数的乘法

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积为0.例:0×1=0

(7)有理数的除法

除以一个不为0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。0除

以任何一个不为0的数,都得0。

(8)有理数的乘方

求n个相同因数乘积的运算,叫做乘方,乘方的结果叫做幂。其中,a叫做底数,n叫做指数。当aⁿ看作a的n次乘方的结果时,也可读作“a的n次幂”或“a的n次方”。

一元一次方程

(1)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫做方程。

(2)一元一次方程

一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。

(3)等式的性质

①等式两边同时加上(或减去)同一个整式,等式仍然成立。

若a=b

那么a+c=b+c

②等式两边同时乘或除以同一个不为0的整式,等式仍然成立。

若a=b

那么有a·c=b·c或a÷c=b÷c(c≠0)

③等式具有传递性。

若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an

(3)解方程式的步骤

解一元一次方程的步骤:去分母、去括号、移项、合并同类项、未知数系数化为1。

①去分母:把系数化成整数。

②去括号

③移项:把等式一边的某项变号后移到另一边。

④合并同类项

⑤系数化为1。

角的知识点

1.角:角是由两条有公共端点的射线组成的几何对象。

2.角的度量单位:度、分、秒

3.顶点:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点

4.角的比较:

(1)角可以看成是由一条射线绕着他的端点旋转而成的。

(2)平角和周角:一条射线绕着他的端点旋转,当始边和终边成一条直线时,所成的角叫平角。当它又和始边重合的时候,所成的角角周角。平角等于108度,周角等于360度,直角等于90度。

(3)平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

5.余角和补角:

(1)余角:如果两个角的和是90度,那么称这两个角“互为余角”,简称“互余”。

性质:等角的余角相等。

(2)补角:如果两个角的和是180度,那么称这两个角“互为补角”,简称“互补”。

性质:等角的补角相等。

阅读全文

与初一上数学知识点总结怎么写相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:705
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1318
华为手机家人共享如何查看地理位置 浏览:1010
一氧化碳还原氧化铝化学方程式怎么配平 浏览:848
数学c什么意思是什么意思是什么 浏览:1369
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1350
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1023
大学物理实验干什么用的到 浏览:1449
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:832
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1608
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1452
数学中的棱的意思是什么 浏览:1017