导航:首页 > 数字科学 > 高中数学有什么思想方法有哪些

高中数学有什么思想方法有哪些

发布时间:2023-02-05 13:44:05

‘壹’ 高中全部数学思想方法

高中数学思想:
(1)转化与化归:这个思想几乎在所有数学题中都会用到,具体地说就是将未知的东西转化为
已知的,这样一步一步的转化就可以将复杂问题转化为若干个简单的小问题
, 进而解决问题。
(2)函数、方程与不等式联想:
这个思想一般不会被人重视,其实无论是方程问题还是不等式问题都可以转化为函数
问题,方程的根与不等式解集的区间端点就是函数的零点。有时在研究或解决方程与不等
式问题时可以转化为函数问题,通过函数图象来解决。
(3)数形结合:
提到数形结合的思想,多数应用在有关函数、导数以及解析几何的题目中,这些题
都是先构造函数(有的题直接给出函数表达式),然后根据函数的解析性质(单调性、奇偶性
以及周期对称性)来解决问题。这种思想大部分人都会想到去用,但是很难用好,这个就
需要做题来训练了。
(4)放缩:
放缩是放大和缩小的简称,放大和缩小大部分会应用在有关不等式的题中(均值定理
选修部分的不等式,还有在导数部分也会经常应用)。放缩这种思想是最难的一种数学思想
,它难在不知道什时候去用,有时即使知道了该用放缩的思想了,但是却不会放大或是
缩小,会放大或缩小也不一定能放缩得恰到好处,放太大了或缩太小了都是徒劳。一般
要想很好的掌握这种数学思想不仅需要大量的练习,有时还需要灵感(也就是运气),但是
好在高考对于这部分并不会重点考察,有时根本就不考相关题目。
(5)其他:其他的数学思想还有很多,但是在高中能用到的也就是我上面所说的...

‘贰’ 高中数学的思想方法有哪些

第一:函数与方程思想:
(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用。
(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础。
高考把函数与方程思想作为七种重要思想方法重点来考查。
第二:数形结合思想:
(1)数学研究的对象是数量关系和空间形式,即数与形两个方面。
(2)在一维空间,实数与数轴上的点建立一一对应关系。
在二维空间,实数对与坐标平面上的点建立一一对应关系。
数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化。
第三:分类与整合思想:
(1)分类是自然科学乃至社会科学研究中的基本逻辑方法。
(2)从具体出发,选取适当的分类标准。
(3)划分只是手段,分类研究才是目的。
(4) 有分有合,先分后合,是分类整合思想的本质属性。
(5) 含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性。
第四:化归与转化思想:
(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题。
(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法。
(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化。
第五: 特殊与一般思想:
(1)通过对个例认识与研究,形成对事物的认识。
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论。
(3)由特殊到一般,再由一般到特殊的反复认识过程。
(4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程。
(5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向。
第六:有限与无限的思想:
(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路。
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向。
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用。
(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查。
第七:或然与必然的思想:
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性。
(2)偶然中找必然,再用必然规律解决偶然。
(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点 。

‘叁’ 高中数学思维方法

导语:高中数学思维方法分享。思维是人脑对客观现实的概括和间接反映,数学思维就是数学地思考问题和解决问题的思维活动形式。数学思维就是数学地思考问题和解决问题的思维活动形式,也就是人们通常所指的数学思维能力,即能够用数学的观点去思考问题和解决问题的能力。

高中数学思维方法

第一:函数与方程思想

(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用

(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础

高考把函数与方程思想作为七种重要思想方法重点来考查

第二:数形结合思想:

(1)数学研究的对象是数量关系和空间形式,即数与形两个方面

(2)在一维空间,实数与数轴上的点建立一一对应关系

在二维空间,实数对与坐标平面上的点建立一一对应关系

数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化

第三:分类与整合思想

(1)分类是自然科学乃至社会科学研究中的基本逻辑方法

(2)从具体出发,选取适当的分类标准

(3)划分只是手段,分类研究才是目的

(4) 有分有合,先分后合,是分类整合思想的本质属性

(5) 含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性

第四:化归与转化思想

(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题

(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法

(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化

第五: 特殊与一般思想

(1)通过对个例认识与研究,形成对事物的认识

(2)由浅入深,由现象到本质、由局部到整体、由实践到理论

(3)由特殊到一般,再由一般到特殊的反复认识过程

(4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程

(5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向

第六:有限与无限的思想:

(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路

(2)积累的'解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向

(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用

(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查

第七:或然与必然的思想:

(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性

(2)偶然中找必然,再用必然规律解决偶然

(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点 。

高中数学思维方法

一、函数与方程的思想方法

函数描述了自然界中量的依存关系,是对问题本身的数量本质特征和制约关系的一种动态刻画。因此,函数思想的实质是提取问题的数学特征,用联系的变化的观点提出数学对象,抽象其数学特征,建立函数关系。很明显,只有在对问题的观察、分析、判断等一系列的思维过程中,具备有标新立异、独树一帜的深刻性、独创性思维,才能构造出函数原型,化归为方程的问题,实现函数与方程的互相转化接轨,达到解决问题的目的。函数知识涉及到的知识点多,面广,在概念性、应用性、理解性上能达到一定的要求,有利于检测学生的深刻性、独创性思维。

二、数形结合的思想方法

数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合,通过对图形的认识,数形结合的转化,可以培养思维的灵活性,形象性,使问题化难为易,化抽象为具体。

三、分类讨论的思想方法

分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想在人的思维发展中有着重要的作用。原因有二,其一:具有明显的逻辑性特点;其二:能训练人的思维的条理性的概括性。

如“参数问题”对中学生来说并不十分陌生,它实际上是对具体的个别的问题的概括.从绝对值、算术根以及在一般情况下讨论字母系数的方程、不等式、函数,到曲线方程等等,无不包含着参数讨论的思想.但在含参数问题中,常常会碰到两种情形:在一种情形下,参数变化并未引起所研究的问题发生质变,例如在 中,参数 的变化并未改变曲线系是抛物线系的性质;而在另一种情况下,参数的变化使问题发生了质变.例如曲线系 中,随着 值的变化,该曲线可能是椭圆、双曲线、圆、二平行直线等,因此需根据 的不同范围分类讨论.这种分类讨论有时并不难,但问题主要在于有没有讨论的意识.在更多的情况下,“想不到要分类”比“不知如何分类”的错误更为普遍.这就是所谓“素质”的问题.良好的数学素养,需长期的磨练形成.

四、等价转化的思想

等价转化思想是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的数学思想方法,转化包括等价转化和非等价转化,等价转化要求转化过程中前因后果应是充分必要的,这样的转化能保证转化后的结果仍为原问题所需要的结果;而非等价转化其过程是充分或必要的,这样的转化能给人带来思维的闪光点,找到解决问题的突破口,是分析问题中思维过程的主要组成部分。

转化思想贯穿于整个高中数学之中,每个问题的解题过程实质就是不断转化的过程。

五、用数学思想方法指导解题练习

①注意分析探求解题思路时数学思想方法的运用。解题的过程就是在数学思想的指导下,合理联想提取相关知识,调用一定数学方法加工、处理题设条件及知识,逐步缩小题设与题断间的差异的过程。也可以说是运用化归思想的过程,解题思想的寻求就自然是运用思想方法分析解决问题的过程。

②注意数学思想方法在解决典型问题中的运用。例如选择题中的求解不等式:>x+1,虽然可以通过代数方法求解,但若用数形结合,转化为半圆与直线的位置关系,问题将变得非常简单。

③用数学思想指导知识、方法的灵活运用,进行一题多解的练习,培养思维的发散性,灵活性,敏捷性;对习题灵活变通,引伸推广,培养思维的深刻性,抽象性;组织引导对解法的简捷性的反思评估,不断优化思维品质,培养思维的严谨性,批判性。对同一数学问题的多角度的审视引发的不同联想,是一题多解的思维本源。

‘肆’ 高中数学思想方法有哪几种

高中数学思想方法有7种,内容如下:

1、函数与方程的思想

函数是高中代数内容的主干,函数思想贯穿于高中代数的全部内容,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。

函数和方程、不等式是通过函数值等于零、大于零或小于零而相互关联的,它们之间既有区别又有联系。函数与方程的思想,既是函数思想与方程思想的体现,也是两种思想综合运用的体现,是研究变量与函数、相等与不等过程中的基本数学思想。

转化有等价转化和非等价转化。等价转化前后是充要条件,所以尽可能使转化具有等价性;在不得已的情况下,进行不等价转化,应附加限制条件,以保持等价性,或对所得结论进行必要的验证。

5、特殊与一般的思想

由特殊到一般,由一般到特殊,是人们认识世界的基本方法之一。数学研究也不例外,由特殊到一般,由一般到特殊的研究数学问题的基本认识过程,就是数学研究中的特殊与一般的思想。

6、有限与无限的思想

函数是对运动变化的动态事物的描述,体现了变量数学在研究客观事物中的重要作用。导数是对事物变化快慢的一种描述,并由此可进一步处理和解决函数的增减、极大、极小、最大、最小等实际问题,是研究客观事物变化率和最优化问题的有力工具。

7、或然与必然的思想

随机现象有两个最基本的特征,一是结果的随机性,即重复同样的试验,所得到的结果并不相同,以至于在试验之前不能预料试验的结果;二是频率的稳定性,即在大量重复试验中,每个试验结果发生的频率“稳定”在一个常数附近。

‘伍’ 高中数学四种思想方法

学习一门知识,究其核心,主要是学其思想和 方法 ,这是学习的精髓。学数学亦如此,分学数学思想和数学方法。下面是我为大家整理的关于高中数学四种思想方法,希望对您有所帮助。欢迎大家阅读参考学习!

1高中数学四种思想方法

学习一门知识,究其核心,主要是学其思想和方法,这是学习的精髓。学数学亦如此,分学数学思想和数学方法。

2数形结合思想

数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使 抽象思维 和形象思维有机结合. 应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决. 运用这一数学思想,要熟练掌握一 些概念和运算的几何意义及常见曲线的代数特征.

应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数 列通项及求和公式的函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线. 以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.

3转化与化归思想

化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想. 转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题. 转 化与化归思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解 题过程的各个环节中. 转化有等价转化与不等价转化. 等价转化后的新问题与原问题实质是一样的. 不等价转 化则部分地改变了原对象的实质,需对所得结论进行必要的修正.

应用转化与化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化. 常见的转化有: 正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平 面相 互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化

4分类与整合思想

分类讨论思想是对数学对象进行分类寻求解答的一种思想方法。分类的原则:分类不重不漏。分类的步骤:①确定讨论的对象及其范围;②确定分类讨论的分类标准;③按所分类别进行讨论;④归纳小结、综合得出结论。分类讨论问题的关键是化整为零,通过局部讨论以降低难度。常见的类型: 由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;

由数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用引起的讨论;由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题引起的讨论。由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。

5函数方程思想

函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种 思维方式 ,是很重要的数学思想。函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想;应用函数思想解题,确立变量之间的函数关系是一关键步骤

大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想;函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。


高中数学四种思想方法相关 文章 :

1. 高中数学思想与逻辑:11种数学思想方法总结与例题讲解

2. 高中数学思想方法

3. 高中数学学习的思想和法则

4. 高中数学四大学习方法

5. 高中数学规律和方法

6. 高中数学巧妙方法

7. 高中数学常考题型答题技巧与方法及顺口溜

8. 高考文科数学的思想方法有哪些

9. 高中数学21种解题方法与技巧

10. 高中数学大题的解题技巧及解题思想

‘陆’ 高中数学思想方法有哪几种

一、特殊与一般思想(即特值法)
二、分类与整合思想
三、函数与方程思想
四、数形结合思想
五、化归与转化思想
六、或然与必然的思想
七、有限与无限的思想

‘柒’ 高中数学的基本思想方法有哪些

1、函数方程思想

函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组)。

然后通过解方程(组)或不等式(组)来使问题获解。有时,还需要函数与方程的互相转化、接轨,达到解决问题的目的。

笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程。

求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。

函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题。

经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解决问题中。

善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系。

构造出函数原型。另外,方程问题、不等式问题、集合问题、数列问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。

2、数形结合思想

“数无形,少直观,形无数,难入微”,利用“数形结合”可使所要研究的问题化难为易,化繁为简。把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答,这种方法在解析几何里最常用。

例如求根号((a-1)^2+(b-1)^2)+根号(a^2+(b-1)^2)+根号((a-1)^2+b^2)+根号(a^2+b^2)的最小值,就可以把它放在坐标系中,把它转化成一个点到(0,1)、(1,0)、(0,0)、(1,1)四点的距离,就可以求出它的最小值。

3、分类讨论思想

当一个问题因为某种量或图形的情况不同而有可能引起问题的结果不同时,需要对这个量或图形的各种情况进行分类讨论。比如解不等式|a-1|>4的时候,就要分类讨论a的取值情况。

4、方程思想

当一个问题可能与某个方程建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。例如证明柯西不等式的时候,就可以把柯西不等式转化成一个二次方程的判别式。

5、整体思想

从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。

整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用,整体代入、叠加叠乘处理、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用。

6、化归思想

在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题。三角函数,几何变换,因式分解,解析几何,微积分,乃至古代数学的尺规作图等数学理论无不渗透着转化的思想。

常见的转化方式有:一般 特殊转化,等价转化,复杂 简单转化,数形转化,构造转化,联想转化,类比转化等。

转化思想亦可在狭义上称为化归思想。化归思想就是将待解决的或者难以解决的问题A经过某种转化手段,转化为有固定解决模式的或者容易解决的问题B,通过解决问题B来解决问题A的方法。

7、隐含条件思想

没有明文表述出来,但是根据已有的明文表述可以推断出来的条件,或者是没有明文表述,但是该条件是一个常规或者真理。例如一个等腰三角形,一条线段垂直于底边,那么这条线段所在的直线也平分底边和顶角。

8、类比思想

把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。

9、建模思想

为了更具科学性,逻辑性,客观性和可重复性地描述一个实际现象,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。

使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。

10、归纳推理思想

由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理称为归纳推理(简称归纳),简言之,归纳推理是由部分到整体,由个别到一般的推理。

另外,还有概率统计思想等数学思想,例如概率统计思想是指通过概率统计解决一些实际问题,如摸奖的中奖率、某次考试的综合分析等等。另外,还可以用概率方法解决一些面积问题。

‘捌’ 高中数学思想与方法有哪些

高中数学思想与方法有:

  1. 函数与方程思想1.1 函数思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析。

转化与化归思想:是把那些待解决或难解决的问题化归到已有知识范围内可解问题的一种重要的基本数学思想.这种化归应是等价转化。

阅读全文

与高中数学有什么思想方法有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:705
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1318
华为手机家人共享如何查看地理位置 浏览:1010
一氧化碳还原氧化铝化学方程式怎么配平 浏览:848
数学c什么意思是什么意思是什么 浏览:1369
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1350
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1023
大学物理实验干什么用的到 浏览:1449
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:832
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1608
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1452
数学中的棱的意思是什么 浏览:1017