Ⅰ 大学数学专业都有哪些课程要详细
专业基础课有数学分析、高等代数、解析几何、概率论与数理统计。这三者是老三门,将来如果考研时要用到的。近代数学的新三门是拓扑学、实变函数与泛函分析、近世代数(也叫抽象代数)。另外其他的一些常见的包括数学分析、微分几何、高等几何、常微分方程、偏微分方程、复变函数论、实变函数论、抽象代数、近世代数、数论、泛函分析、拓扑学、模糊数学。
拓展资料:
1.数学源自于古希腊语,是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学的基本要素是:逻辑和直观、分析和推理、共性和个性。
2.数学专业培养德、智、体、美全面发展的掌握数学与应用数学科学的基本理论、基础知识和基本方法,能够运用数学知识和使用计算机解决若干实际数学问题,具有现代教育观念,适应教育改革需要,以及具有良好的知识更新能力和创新能力的中等学校数学师资和教育、教学管理工作及科学研究的专门人才。
3.计算数学是伴随着计算机的出现而迅猛发展起来的新学科,涉及计算物理、计算化学、计算力学、计算材料学、环境科学、地球科学、金融保险等众多交叉学科。它运用现代数学理论与方法解决各类科学与工程问题,分析和提高计算的可靠性、有效性和精确性,研究各类数值软件的开发技术。既突出了解决信息、电子与计算机领域中的某些核心理论技术问题,又注意到从这些高新技术中抽象出新的数学理论;在保持应用数学与计算数学主体研究方向优势的基础上,重视并加强信息科学的数学基础、数据分析与统计计算、科学计算、现代优化、电子系统的数值模拟、生物系统的数学建模等研究。
Ⅱ 大学数学专业学什么课程
大学数学专业学什么课程如下:
数学分析III analysis calculus 5
高等代数II algebra algebra 5
高等代数II algebra algebra 5
程序设计 CS cs 4
常微分方程 analysis ODE 3
抽象代数 algebra algebra 3
复变函数 analysis 函数论 3
实变函数 analysis 函数论 3
数学模型 applied math applied math 3
概率论 P&S probability 3
泛函分析 analysis 泛函分析 3
数理方程 analysis PDE 3
基础力学 applied math applied math 3
毕业论文(含专题讨论) applied math applied math 6
数学与应用数学专业必修课程:
以上+
拓扑学 geometry topology 3
微分几何 geometry geometry 3
信息与计算科学专业分4个方向,每个方向要求的课程不一样,比如说计算数学方向要求学 微分方程数值解法 以及其他一些计算类的选修课程。
总的来说,必修课就是数学专业本科的一些骨干课程,是所有合格的数学专业本科生都应当掌握的基础知识。所以也没什么挑肥拣瘦的。。本院的课程设置,信计方向的学生不用修拓扑与微分几何。
至于选修课程,本人上过的都组合数学、数论基础,旁听过抽代续论、应用偏微分方程、复分析, etc.其实虽然列表里面有这么多选修课,但并不是都能开出来。比如说多复变函数论,本院能开多复变的老师大概也就一两个。
而且实际上本科生能听的课程资源不仅仅是本科课程,研究生课程也可以随意旁听。本人也旁听过一两门研究生课。
Ⅲ 大学数学课程有哪些
大学数学专业可学习的课程分为公共课程和专业课程,具体如下:
1、公共课程:大学英语、体育、政治(马克思主义思想概论、毛泽东思想与中国特色社会主义理论、思想道德修养与法律基础、中国近现代史纲要)、数学(高等数学、数学分析、解析几何)、高等代数(线性代数)、概率论与数理统计。
2、专业课程:复变函数论、实变西数与泛函分析、抽象代数(近世代数)、常微分方程、微分几何、数学计算方法、初等数学研究(初等代数和初等几何)、数学模型、数学实验、拓扑学、数学历史、物理学、计算机基础知识、C语言/Nava语言等,以及根据应用方向选择的基本课程。
2、数学专业培养目标:本专业培养德、智、体、美全面发展的掌握数学与应用数学科学的基本理论、基础知识和基本方法,能够运用数学知识和使用计算机解决若干实际数学问题,具有现代教育观念,适应教育改革需要,及具有良好的知识更新能力和创新能力的中等学校数学师资和教育、教学管理工作及科学研究的专门人才。
Ⅳ 大学数学学什么 难不难
大学数学专业的学生需要学习的课程包括高等代数、数学分析、解析几何、概率论、高等几何、微分几何、复变函数、实变函数、微分方程、近世代数、初等数论、普通物理学、计算机等。
大学的数学学习内容属于高等数学,主要的内容有
1、极限
极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。极限是解决高等数学问题的基础。
2、微积分
微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科,在许多领域都有重要的应用。
3、空间解析几何
借助矢量的概念可使几何更便于应用到某些自然科学与技术领域中去,因此,空间解析几何介绍空间坐标系后,紧接着介绍矢量的概念及其代数运算。
的确很难。在课前最好预习一下,看哪些东西看不懂。听课时必须十分认真,还可稍微记点笔记。重点听记自己不懂的地方。听了教授的课后,一般还要反重复习,先回忆教授讲的课,再重点理解甚至是模仿教授解的题(如高等代数没入门时可这样处,多次反复模仿解题,有助于理解),完成作业。还有,一般难度较大的课程,教授会强掉考什么,万万不可将教授的话当耳边风,必须认真打记,重点重习。做好了上述事情,虽不说打高分,一般来说,及格是大概率事件。个别次数不及格,也只能根据教授强调的重点,重新复习,进行补考了。
Ⅳ 大学数学学什么
分析学、代数学、几何学及其应用的基本理论和基本方法以及一些常用的计算机知识和数学软件的使用。
数学专业研究方向有分析,代数,几何,方程,拓扑,数论,概率论与数理统计等。
在国家重视基础科学发展以及重点建设一流专业之际,数学专业作为第一批国家级一流专业建设点迎来了一个千载难逢的发展机遇,发展前景广阔,发展趋势很好。
Ⅵ 大学数学系都学什么
数学系的主要课程有:数学分析、高等代数、解析几何、普通物理、概率论、数学建模、近世代数、高等几何、微分几何、常微分方程、复变函数、实变函数、初等数学研究、数学实验等。
一、应用数学的概念:
应用数学是应用性较强的诸数学学科或分支的统称。
泛指一切数学理论和方法中应用性较强的部分。
二、培养方向:
该专业培养掌握数学科学的基本理论与基本方法,具备运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练,能在科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作的高级专门人才。
三、专业介绍:
该专业旨在培养数学与应用数学的高素质拔尖人才,培养现代数学顶峰的攀登者,培养在我国现代化建设中担当大任的数学和应用数学领军人物。
在课程设置上,尤其在一、二年级,强调正规扎实的数学基础训练,为学生将来成才和多方向的发展奠定坚实宽广的根基。
同时引导学生深入到数学最重要的分支,接触现代数学思想和框架,拓宽知识领域,激发求知和探索兴趣。
在积极向上,宽松自由的环境中,培养学生高度的创新意识和能力,达到专与博、严与活的高度和谐统一。
该专业含数学、应用数学、概率统计三个方向,学生可以选修不同侧重的课程。
除开设国内一流的标准的数学课程之外,还根据师资优势和数学发展,在现代数论、代数、几何、分析、微分方程、概率统计及计算机科学等方面,开设了有特色的系列课程。
Ⅶ 大学数学系学什么课程
数学系的主要课程有:数学分析、高等代数、解析几何、普通物理、概率论、数学建模、近世代数、高等几何、微分几何、常微分方程、复变函数、实变函数、初等数学研究、数学实验等。
Ⅷ 大学数学专业学什么课程
大学数学专业学什么课程
一般来说,大学数学专业的课程包括微积分、代数学、几何学、抽象代数学、高等代数学、常微分方程及其应用、复变函数理论及其应用、泛函分析和实变函数理论以及相关的物理和工程应用。此外,还有一些选修性课程,如随机过程理论与应用,力学原理和应用,量子力学原理和应用,奇异值分解圈定传感信息中心或者对图形图像信号的处理。
Ⅸ 大学数学课程有哪些
大学数学专业的学生需要学习的课程包括高等代数、数学分析、解析几何、概率论、高等几何、微分几何、复变函数、实变函数、微分方程、近世代数、初等数论、普通物理学、计算机等。
数学的应用空间广阔,就业面相应也比较广阔,无论是进行理论研究、科研数据分析、软件开发,还是从事金融保险、国际经济与贸易、工商管理、通讯工程、建筑设计等行业,都离不开相关的数学专业知识。
数学专业毕业生具有比较扎实的理论基础,只要再学习一些相关知识,他们可以转向很多理工、经济类专业,比如计算机、统计、金融、经济学等,因此他们在找工作的时候是具有很大优势的。
另外,数学对于中考、高考都是十分重要的,数学专业毕业的学生也可以选择考取教师资格证书,做一名专业的数学教师。