导航:首页 > 数字科学 > 离散数学xrx是什么意思

离散数学xrx是什么意思

发布时间:2023-02-08 06:53:59

⑴ 求证一个离散数学定理的证明

tr(R)=t(R U I)=(R U I)U(R U I)²U…=I U R U R²U…=I U t(R)=rt(R)
其中U表示析取,也就是或。

⑵ 离散数学xry是什么意思

在离散数学中,集合A、B, 记作xRy,就是集合。用来定义二元关系。
数学上,二元关系用于讨论两个数学对象的联系。诸如算术中的“大于”及“等于”,几何学中的"相似"。二元关系有时会简称关系,但一般而言关系不必是二元的。

(2)离散数学xrx是什么意思扩展阅读

集合U和A的相对差集,符号为U A,是在集合U中,但不在集合A中的所有元素,相对差集{1,2,3} {2,3,4} 为{1} ,而相对差集{2,3,4} {1,2,3} 为{4} 。

集合A和B的对称差,符号为A △ B或A⊕B,是指只在集合A及B中的`其中一个出现,没有在其交集中出现的元素。

集合的表示,表示一个集合时通常使用列元素发和谓词表示法:

1、列元素法,将集合中的每一元素都列出来:如A = {a, b, c},Z = {1, 2, 3}

2、谓词表示法,用谓词来概括集合中的属性:B = {x|x∈R∧x^2-1=0}

3、集合中的元素都是不相同的,同一个元素多次出现视为一个元素,例如{1, 2, 3, 3, 3} = {1, 2, 3}

4、集合中的元素是无序的,例如{1,2,3,4} = {2,4,3,1}

⑶ 在离散数学中,xRy是什么意思

在离散数学中,集合A、B, 记作xRy,就是集合。用来定义二元关系。

数学上,二元关系用于讨论两个数学对象的联系。诸如算术中的“大于”及“等于”,几何学中的"相似"。二元关系有时会简称关系,但一般而言关系不必是二元的。

集合U和A的相对差集,符号为U A,是在集合U中,但不在集合A中的所有元素,相对差集{1,2,3} {2,3,4} 为{1} ,而相对差集{2,3,4} {1,2,3} 为{4} 。

集合A和B的对称差,符号为A △ B或A⊕B,是指只在集合A及B中的其中一个出现,没有在其交集中出现的元素。

(3)离散数学xrx是什么意思扩展阅读

集合X与集合Y上的二元关系是R=(X,Y,G(R)),其中G(R),称为R的图,是笛卡儿积X×Y的子集。若 (x,y) ∈G(R) ,则称x是R-关系于y,并记作xRy或R(x,y)。

否则称x与y无关系R。但经常地我们把关系与其图等同起来,即:若RX×Y,则R是一个关系。

⑷ 离散数学:A={1,2,3,4},A上所有等价关系是什么 如何划分等价关系

等价关系是设R是非空集合A上的二元关系,若R是自反的、对称的、传递的,则称R是A上的等价关系。给定非空集合A,若有集合S={S ,S ,…,S },其中S A,S(i=1,2,…,m)且S S = (i j)同时有 S =A,称S是A的划分。

研究等价关系的目的在于将集合中的元素进行分类,选取每类的代表元素来降低问题的复杂度,如软件测试时,可利用等价类来选择测试用例。

(4)离散数学xrx是什么意思扩展阅读:

定义

若关系R在集合A中是自反、对称和传递的,则称R为A上的等价关系。所谓关系R 就是笛卡尔积A×A 中的一个子集。

A中的两个元素x,y有关系R,如果(x,y)∈R。我们常简记为 xRy。

自反: 任意x属于A,则x与自己具有关系R,即xRx;

对称: 任意x,y属于A,如果x与y具有关系R,即xRy,则y与x也具有关系R,即yRx;

传递: 任意x,y,z属于A,如果xRy且yRz,则xRz

x,y具有等价关系R,则称x,y R等价,有时亦简称等价。

⑸ 离散数学,这个自反关系,不是只要是A中任意的x可以推出xRx就是自反吗,为什么R1不是自反诶

因为R1中少了一个<3,3>,你也说了是集合中任意的一个元素

⑹ 离散数学 例如 xRy 是什么意思 还有可否解释下 传递性定义不太懂

xRy,表示x与y满足关系R,这是关系的中缀形式。

传递性,主要这样检查:只要有aRb,bRc同时成立,那就必须aRc也成立。

数学上,二元关系用于讨论两个数学对象的联系。诸如算术中的“大于”及“等于”,几何学中的"相似"。二元关系有时会简称关系,但一般而言关系不必是二元的。

集合U和A的相对差集,符号为U A,是在集合U中,但不在集合A中的所有元素,相对差集{1,2,3} {2,3,4} 为{1} ,而相对差集{2,3,4} {1,2,3} 为{4} 。

(6)离散数学xrx是什么意思扩展阅读;

离散数学可以看成是构筑在数学和计算机科学之间的桥梁,因为离散数学既离不开集合论、图论等数学知识,又和计算机科学中的数据库理论、数据结构等相关,它可以引导人们进入计算机科学的思维领域,促进了计算机科学的发展。

离散数学被分成三门课程进行教学,即集合论与图论、代数结构与组合数学、数理逻辑。教学方式以课堂讲授为主, 课后有书面作业、通过学校网络教学平台发布课件并进行师生交流。

⑺ 什么是离散数学中的“覆盖关系”“全序关系”“拟序关系”“偏序关系”

形式定义:

设R是集合A上的一个二元关系,若R满足:

Ⅰ 自反性:对任意x∈A,有xRx;

Ⅱ 反对称性(即反对称关系):对任意x,y∈A,若xRy,且yRx,则x=y;

Ⅲ 传递性:对任意x, y,z∈A,若xRy,且yRz,则xRz。

则称R为A上的偏序关系,通常记作≼。注意这里的≼不必是指一般意义上的“小于或等于”。

若然有x≼y,我们也说x排在y前面(x precedes y)。

举例解释:

对于上述提到的自反性和传递性的举例解释:

集合A={a,b,c...}上的关系R是自反 指的是R有(a,a),(b,b),(c,c)...

R是传递,指若有(a,b)和(b,c), 则必有(a,c).

偏序(Partial Order)的概念:

设A是一个非空集,P是A上的一个关系,若P满足下列条件:

Ⅰ 对任意的a∈A,(a,a)∈P;(自反性 reflexlve)

Ⅱ 若(a,b)∈P,且(b,a)∈P,则 a=b;(反对称性,anti-symmentric)

Ⅲ 若(a,b)∈P,(b,c)∈P,则(a,c)∈P;(传递性,transitive)

则称P是A上的一个偏序关系。

若P是A上的一个偏序关系,我们用a≤b来表示(a,b)∈P。

整除关系便是一个定义在自然数上的一个偏序关系|,3|6的含义是3整除6。大于或等于也是定义在自然数集上的一个偏序关系。

设集合X上有一全序关系,如果我们把这种关系用 ≤ 表述,则下列陈述对于 X 中的所有 a, b 和 c 成立:

如果 a ≤ b 且 b ≤ a 则 a = b (反对称性)

如果 a ≤ b 且 b ≤ c 则 a ≤ c (传递性)

a ≤ b 或 b ≤ a (完全性)

配对了在其上相关的全序的集合叫做全序集合(totally ordered set)、线序集合(linearly ordered set)、简单序集合(simply ordered set)或链(chain)。链还常用来描述某个偏序的全序子集,比如在佐恩引理中。

关系的完全性可以如下这样描述:对于集合中的任何一对元素,在这个关系下都是相互可比较的。

注意完全性条件蕴涵了自反性,也就是说,a ≤ a。因此全序也是偏序(自反的、反对称的和传递的二元关系)。全序也可以定义为“全部”的偏序,就是满足“完全性”条件的偏序。

可作为选择的,可以定义全序集合为特殊种类的格,它对于集合中的所有 a, b 有如下性质:

我们规定 a ≤ b 当且仅当。可以证明全序集合是分配格。

全序集合形成了偏序集合的范畴的全子范畴,通过是关于这些次序的映射的态射,比如,映射 f 使得"如果 a ≤ b 则 f(a) ≤ f(b)"。

在两个全序集合间的关于两个次序的双射是在这个范畴内的同构。

严格全序

对于每个(非严格)全序 ≤ 都有一个相关联的非对称(因此反自反)的叫做严格全序的关系 <,它可以等价地以两种方式定义:

a < b 当且仅当 a ≤ b 且 a ≠ b

a < b 当且仅当 ¬(b ≤ a) (就是说 > 是 ≤ 的补关系的逆关系)

性质:

关系是传递的: a < b 且 b < c 蕴涵 a < c。

关系是三分的: a < b, b < a 和 a = b 中有且只有一个是真的。

关系是严格弱序,这里关联的等价是等同性。

我们可以其他方式工作,选择 < 为三分的二元关系;则全序 ≤ 可等价地以两种方式来定义:

a ≤ b 当且仅当 a < b 或 a = b

a ≤ b 当且仅当 ¬(b < a)

还有两个关联的次序是补关系 ≥ 和 >,它们构成了四元组 {<, >, ≤, ≥}。

我们可以通过这四个关系中的任何一个,定义或解释集合全序的方式;由符号易知所谈论的是非严格的,抑或是严格全序。

例子

字母表的字母按标准字典次序排序,比如 A < B < C 等等。

把一个全序限制到其全序集合的一个子集上。

所有的两个元素都是可比较的任何偏序集合 X (就是说,如果 a,b 是 X 的成员,则 a≤b 或 b≤a 中的一个为真或二者都为真)。

由基数或序数(实际上是良序)组成的任何集合。

如果 X 是任何集合,而 f 是从 X 到一个全序集合的单射函数,则 f 诱导出 X 上的一个全序:规定 x1 < x2 当且仅当 f(x1) < f(x2)。

设有某个集族,其成员都是用序数为索引的全序集合,然后把这集族上取的笛卡尔积中的有序对按字典序排序,那麽,这字典序是一全序。例如,若有一个集合由一些词语组成,按字母表把词语排序的话会是一全序。举个实例,我们规定"bird"先于"cat"。这可视为是向字母表加入空格符号""(定义""先于所有字母),得到集合A,然后对其自身取可数次笛卡尔积,得到Aω。"bird"可理解为Aω里的序对("b","i","r","d","","",...),"cat"则是("c","a","t","","","",...)。从而{"bird","cat"}成为Aω的一个子集,把Aω上的字典序限制到这字集,便得出"bird"<"cat"。

实数集和自然数集、整数集、有理数集(作为实数集的子集),用平常的小于(<)或大于(>)关系排序都是(严格)全序的。它们都可以被证明是带有特定性质的全序集合的唯一的(在同构意义下的)最小实例(一个全序 A 被称为是带有特定性质的最小全序,即意味着只要别的全序 B 有这个性质,就有从 A 到 B 的子集的一个序同构):

自然数集是最小的没有上界的全序集合。

整数集是最小的没有上界也没有下界的全序集合。

有理数集是最小的在实数集内稠密的全序集合,这里的稠密性是指对于任意实数a, b,都存在有理数q使得a<q<b。

实数集是最小的无界连通(序拓扑的意义下)的全序集合。

阅读全文

与离散数学xrx是什么意思相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:705
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1318
华为手机家人共享如何查看地理位置 浏览:1010
一氧化碳还原氧化铝化学方程式怎么配平 浏览:848
数学c什么意思是什么意思是什么 浏览:1369
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1350
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1023
大学物理实验干什么用的到 浏览:1449
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:832
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1608
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1452
数学中的棱的意思是什么 浏览:1017