导航:首页 > 数字科学 > 数学的思想与认识怎么写

数学的思想与认识怎么写

发布时间:2023-02-09 09:08:34

A. 如何理解数学的基本思想

数学的基本思想
1.转化与化归思想:是把那些待解决或难解决的问题化归到已有知识范围内可解问题的一种重要的基本数学思想.这种化归应是等价转化,即要求转化过程中的前因后果应是充分必要的,这样才能保证转化后所得结果仍为原题的结果. 高中数学中新知识的学习过程,就是一个在已有知识和新概念的基础上进行化归的过程.因此,化归思想在数学中无处不在. 化归思想在解题教学中的的运用可概括为:化未知为已知,化难为易,化繁为简.从而达到知识迁移使问题获得解决.但若化归不当也可能使问题的解决陷入困境.
2.逻辑划分思想(即分类与整合思想):是当数学对象的本质属性在局部上有不同点而又不便化归为单一本质属性的问题解决时,而根据其不同点选择适当的划分标准分类求解,并综合得出答案的一种基本数学思想.但要注意按划分标准所分各类间应满足互相排斥,不重复,不遗漏,最简洁的要求. 在解题教学中常用的划分标准有:按定义划分;按公式或定理的适用范围划分;按运算法则的适用条件范围划分;按函数性质划分;按图形的位置和形状的变化划分;按结论可能出现的不同情况划分等.需说明的是: 有些问题既可用分类思想求解又可运用化归思想或数形结合思想等将其转化到一个新的知识环境中去考虑,而避免分类求解.运用分类思想的关键是寻找引起分类的原因和找准划分标准.
3. 函数与方程思想(即联系思想或运动变化的思想):就是用运动和变化的观点去分析研究具体问题中的数量关系,抽象其数量特征,建立函数关系式,利用函数或方程有关知识解决问题的一种重要的基本数学思想.
4. 数形结合思想:将数学问题中抽象的数量关系表现为一定的几何图形的性质(或位置关系);或者把几何图形的性质(或位置关系)抽象为适当的数量关系,使抽象思维与形象思维结合起来,实现抽象的数量关系与直观的具体形象的联系和转化,从而使隐蔽的条件明朗化,是化难为易,探索解题思维途径的重要的基本数学思想.
5. 整体思想:处理数学问题的着眼点或在整体或在局部.它是从整体角度出发,分析条件与目标之间的结构关系,对应关系,相互联系及变化规律,从而找出最优解题途径的重要的数学思想.它是控制论,信息论,系统论中“整体—部分—整体”原则在数学中的体现.在解题中,为了便于掌握和运用整体思想,可将这一思想概括为:记住已知(用过哪些条件?还有哪些条件未用上?如何创造机会把未用上的条件用上?),想着目标(向着目标步步推理,必要时可利用图形标示出已知和求证);看联系,抓变化,或化归;或数形转换,寻求解答.一般来说,整体范围看得越大,解法可能越好.
在整体思想指导下,解题技巧只需记住已知,想着目标, 步步正确推理就够了.
中学数学中还有一些数学思想,如:
集合的思想;
补集思想;
归纳与递推思想;
对称思想;
逆反思想;
类比思想;
参变数思想
有限与无限的思想;
特殊与一般的思想。
它们大多是本文所述基本数学思想在一定知识环境中的具体体现.所以在中学数学中,只要掌握数学基础知识,把握代数,三角,立体几何,解析几何的每部分的知识点及联系,掌握几个常用的基本数学思想和将它们统一起来的整体思想,就定能找到解题途径.提高数学解题能力.

数学解题中转化与化归思想的应用

数学活动的实质就是思维的转化过程,在解题中,要不断改变解题方向,从不同角度,不同的侧面去探讨问题的解法,寻求最佳方法,在转化过程中,应遵循三个原则:
1、熟悉化原则,即将陌生的问题转化为熟悉的问题;
2、简单化原则,即将复杂问题转化为简单问题;
3、直观化原则,即将抽象总是具体化。

策略一:正向向逆向转化
一个命题的题设和结论是因果关系的辨证统一,解题时,如果从下面入手思维受阻,不妨从它的正面出发,逆向思维,往往会另有捷径。

策略二:局部向整体的转化
从局部入手,按部就班地分析问题,是常用思维方法,但对较复杂的数学问题却需要从总体上去把握事物,不纠缠细节,从系统中去分析问题,不单打独斗。

策略三:未知向已知转化
又称类比转化,它是一种培养知识迁移能力的重要学习方法,解题中,若能抓住题目中已知关键信息,锁定相似性,巧妙进行类比转换,答案就会应运而生。

逻辑划分思想
分类讨论的一般步骤:
(1)明确讨论对象及对象的范围P。(即对哪一个参数进行讨论);
(2)确定分类标准,将P进行合理分类,标准统一、不重不漏,不越级讨论。;
(3)逐类讨论,获取阶段性结果。(化整为零,各个击破);
(4)归纳小结,综合得出结论。(主元求并,副元分类作答)。

B. 数学思想方法的认识

数学思想方法的培养也不可能“一蹴而就,立竿见影”,而是一个“水滴石穿”的过程。数学思想方法蕴含在小学数学学习的各个阶段,随着知识的不断学习而悄悄滋润着学生的大脑,潜移默化地学生认知的发展。因此,数学思想方法的教学不能单单只看一节课的内容,还要看这节课对学生思维发展的作用。我们要从长远角度来规划数学思想方法的教学,从发展的角度评价学生数学思想方法学习的成绩。这样,学生会逐步学会数学思考。

数学思想方法是对数学及规律的理性认识,是对数学知识的本质认识,是数学认识过程中提炼上升的数学观点方法。学生大脑中若不蕴含数学思想方法,会导致数学学习缺乏自主性,往往就成为离不开教师这个拐棍的被动学习者,学的数学知识不能用数学思想方法有效连接,支离破碎。所以,学生在数学学习中,大脑有了数学思想,学习才有方向导引,心中有了明确方向,才能主动思考,才有利于对数学本质的认识,才能知道如何去思考和解决问题。

C. 数学的精神思想和方法

数学基础打得好,对将来的升学也有较大帮助。但是数学的学习比较抽象,小学生在学习 过程中会碰到一些 “拦路虎”,掌握一些方法,这些就都不怕了。以下是数学的精神思想和方法,欢迎阅读。

1、对应思想方法

对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法

假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法

比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法

用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。

5、类比思想方法

类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。

6、转化思想方法

转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法

分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

8、集合思想方法

集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透集合思想。在讲述公约数和公倍数时采用了交集的思想方法。

9、数形结合思想方法

数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。

10、统计思想方法

小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。

11、极限思想方法

事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。

12、代换思想方法

它是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的'价钱正好相等,桌子和椅子的单价各是多少?

13、可逆思想方法

它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。如一辆汽车从甲地开往乙地,第一小时行了全程的1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。

14、化归思维方法

把有可能解决的或未解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。化归的方向应该是化隐为显、化繁为简、化难为易、化未知为已知。

15、变中抓不变的思想方法

在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解。如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?

16、数学模型思想方法

所谓数学模型思想是指对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析综合概括等所谓过程,得到简化和假设,它是把生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围事物或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。

17、整体思想方法

对数学问题的观察和分析从宏观和大处着手,整体把握化零为整,往往不失为一种更便捷更省时的方法。

D. 小学数学思想与方法

数学思想是数学知识内容的精髓,是对数学的本质认识。是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,是构建数学理论和用数学理论解决问题的指导思想。

数学方法是指从数学角度提出问题、解决问题时所采用的各种方式和手段。数学思想和数学方法既有区别又有密切联系。数学思想的理论和抽象程度要高一些,而数学方法的实践性更强一些。人们实现数学思想往往要靠一定的数学方法;而人们选择数学方法,又要以一定的数学思想为依据。因此,二者是有密切联系的。我们把二者合称为数学思想方法。

数学思想方法是数学的灵魂,那么,要想学好数学、用好数学,就要深入到数学的“灵魂深处”。

二、小学数学思想方法的重要意义。

1.有利于建立现代数学教育观、落实新课程理念

义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。”首次提出了“四基”的目标和理念,也首次把数学思想作为义务教育阶段,尤其是小学数学教育的基本目标之一,更加强调数学思想的重要性和重视数学思想。一方面是关于数学思想方法的专业知识方面的欠缺,另一方面是课堂教学中应该具备的数学思想方法的意识、经验、策略等的不足。

3.有利于提高学生的思维水平。培养“四能”完善认知结构,指导学习迁移,促进思维发展。

因此,在小学数学阶段有意识的向学生渗透一些基本的'数学

想方法可以加深学生对数学概念、公式、法则、定律等知识的数学本质的理解,提高学生发现问题、提出问题、分析问题和解决问题的能力及思维能力,也是小学数学进行素质教育的真正内涵之所在。同时,也能为初中数学的学习打下较好的基础。

三、小学数学思想方法有哪些?

数学思想是有层次的,较高层次的基本思想有三个:抽象思

推理思想、模型思想,有这三个基本思想演变、派生、发展出很多其他的较低层次的数学思想。这些数学思想的关系如下。

抽象思想包括符号化思想、分类思想、集合思想、对应思想、

限与无限思想、变中有不思想。

推理思想包括公理化思想、化归思想、类比推理、归纳推理、演

推理、变换思想、数形结合思想、代换思想、逐步逼近的思想。

模型思想包括简化思想、量化思想、方程思想、函数思想、优

思想、随机思想、统计思想

其他数学思想方法包括数学美思想,分析法和综合法,反证法

假设法,穷举法,数学思想方法的综合应用

四、教学中如何有意识的渗透数学思想方法?

1.重视思想方法目标的落实

2.在知识形成过程中体现数学思想方法

3.在知识的应用过程中体现数学思想方法

4.在整理和复习、总复习中体现数学思想方法

5.潜移默化、明确呈现、长期坚持

下面是五年级下册应用的数学思想方法,1.符号化思想。2.分类思想。3.集合思想。4.变中有不变思想。5.有限与无限思想。6.归纳法。7.类比法。8.演绎推理思想。9.转化思想。10.数形结合思想。11.几何变换思想。12.代换思想。13.模型思想。14.优化思想。15.统计思想。16.分析法与综合法。17.穷举法。18.比较差异法。

数学思想方法不同于一般的概念和技能,后者一般通过短期

训练便能掌握,数学思想方法的教学更应该是一个通过长期的渗透和影响才能够形成思想和方法的过程。

数学思想方法重在悟,“随风潜入夜,润物细无声”,希望数学思想方法的教学能够象春雨一样,滋润着学生的心田。

E. 对数学的认识200字范文

培养学生思维的灵活性是数学教学工作者的一个重要教学环节,它主要表现在使学生能根据事物的变化,运用已有的经验灵活地进行思维,及时地改变原定的方案,不局限于过时或不妥的假设之中,因为客观世界时时处处在发展变化,所以它要求学生用变化、发展的眼光去认识、解决问题,“因地制宜”“量体裁衣”的思维灵活性的表现.
数学教学中,“一题多解”是训练,是培养学生思维灵活的一种良好手段,通过“一题多解”的训练能沟通知识之间的内在联系,提高学生应用所学的基础知识与基本技能解决实际问题的能力,逐步学会举一反三的本领,在教材安排的例题中,有相当类的题目存在一题多解的情况.

F. 数学思想是什么

LV.4
2017-10-25
数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想

G. 数学是什么写下你对数学的最原始的认识(400字)

关于“数学”是什么,大概有以下说法:

(1)万物皆数说“万物皆数”的始作俑者是毕达哥拉斯,他说:“数统治着宇宙”。这一说法在长时间内得到不少人的赞同。苏格拉底甚至强调,学习数学是“为了灵魂本身去学”。柏拉图称“上帝乃几何学家”,他在自己学园门上写着:“不懂得几何学的不得入内。”

(2)哲学说自从古希腊人搞哲学开始,数学就成为哲学问题的重要来源。古希腊的大哲学家几乎都是大数学家,这就难怪为什么他们比较容易从哲学上来定义数学。亚里士多德说:“新的思想家虽说是为了其他事物而研究数学,但他们却把数学和哲学看作是相同的。”

牛顿在其《自然哲学之数学原理》第一版序言中曾说,他是把这本书“作为哲学的数学原理的着作”,“在哲学范围内尽量把数学问题呈现出来。”罗素则更直接,他说:“为了创造一种健康的哲学,你应该抛弃形而上学,且要成为一个好数学家。”他把数学的素养作为创造健康哲学的基本条件。

(3)符号说数学被人们普遍公认为是一种高级语言,是符号的世界。伽里略的一段话流传颇广,即“宇宙是永远放在我们面前的一本大书,哲学就写在这本书上。但是,如果不首先掌握它的语言和符号,就不能理解它。这本书是用数学写的,它的符号是三角形、圆和其他图形,不借助于它们就一个字也看不懂,没有它们就只会在黑暗的迷宫中踯躅。”

(4)科学说此说认为,数学是一门科学。“数学,科学的皇后;算术,数学的皇后。”(G·F·高斯)“数学是科学的大门和钥匙。”(培根)“数学是我们时代有势力的科学,它不声不响地扩大它所征服的领域;那种不用数学为自己服务的人将会发现数学被别人用来反对他自己”(赫尔巴黎)。

在《中国大网络全书·数学卷》中对数学的定义是:“数学是研究现实世界中数量关系和空间形式的,简单地说,是研究数和形的科学。”(吴文俊)这一权威的论断,脱胎于马克思和恩格斯关于数学的概括。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。

M·克莱因说:“数学不仅是一种方法、一门艺术或一种语言,数学更主要的是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说;满足了人类探索宇宙的好奇心和对美妙音乐的冥想;有时甚至可能以难以察觉到的方式但无可置疑地影响着现代历史的进程。”“实际上,在现代经验科学中,能否接受数学方法已越来越成为该学科成功与否的主要判别标准。”(爱因斯坦文集。)

我们比较熟悉的对“数学是什么?”的回答有:“数学是模式的科学”。“数学是科学,数学更是一门创造性的艺术”, “数学是科学,数学也是一门技术。”,“数学是一种语言。”,“数学是一种文化。”,“数学是科学的语言,是思维的体操,是生活的需要,是最后取胜的法宝”等等。

数学,是一个多元化综合的产物。如果要用几句话给“数学是什么”作一个恰当的回答,决非是一件易事,关键是看问题的角度。对“数学”的认识,我们应当从一元论走向多元论。美国数学家柯朗在他的《数学是什么》的书中说道:“…对于学者,对于普通人来说,更多的是依靠自身的数学经验,而不是哲学,才能回答这个问题:数学是什么?”

H. 数学学习心得体会怎么写

学习数学,而不是一两件事情。在我看来,最关键的是它培养的兴趣。如果你恨它,因为热管不感兴趣,甚至头痛,恐惧,这是很难的数学努力。这样的数学不感兴趣,不用功,这是很难去学习它。
当然,灯是不足够的兴趣。必须尝试去学习它。至少,一定要记住这本书的概念,公式,最好的时间来预览有什么新的教训,第二天掌握更快,更多,更好的新的一课。类记一些笔记下要点,回家晚上以上回顾,总结和学习新的东西。问老师不明白的主题,并问明了至今。当解决问题的余老师有一个简单的方法,可以提高,与老师和同学们进行了讨论。不要担心自己可能是错误的,但不敢作出这样的问题,这是一个很好的锻炼机会。教师激励我们的人,而不是“拐杖”,关键是要依靠自己的努力,多动脑。通常你可以做一些课外灵活的标题。有时,一个棘手的问题是怎么画,要几天做它,就会有成功的喜悦。

仔细,认真缺一不可。应认真回答每个问题集中思想。甲数学论文,大部分的问题是要计算。我们应该认真计算,有些问题的陷阱一定要小心。卷子做了可怕的仔细检查。

最后一个问题,做题的基础上,确定关键条件,认真了解。在一般情况下,每一个字,每一个条件有一定的作用,应充分利用回答的话题。

:什么样的人数学学习

一个广阔的知识背景

教育是Suhuo穆林斯基说,“必须记住的材料比较复杂,而且必须保持在内存中的主要结论,规则是“知识背景”的学习过程中应该更加广阔。“换句话说,学生必须能够安全地识记,理解和灵活使用的公式,规则的结论,他一定要读,我想对很多并不需要记忆的材料。

调查过程中,我们发现,数学的大学生往往有广泛的知识背景,喜欢阅读一些文学名着,历史传记也喜欢读一些数学方面的书,如“快速计算秘密”,“物理和化学”,以及一个图书馆,书店有趣的智力的书籍。此外,推荐的书目和数学的“好玩的数学”系列“训练思考能力的数学书,数学的故事”。 “

除了建立了广阔的知识背景,阅读节制的能力和兴趣的学习有很大的帮助。

像”懒“
<BR /你相信吗?“偷懒”的数学一样,往往学得更好,他们的个性特征往往是崇尚简单,为什么呢?因为这种类型的遇险人员认为:“有没有更简单的方法吗?”所以经常思考,逐渐一看便知有把握的关键点和关键环节,以最便捷的方式解决问题的能力。
经历了人生

学习数学是一个截流现场的认识。数学解决实际问题的学科,没有生活经验,往往是困难的数学知识解决问题的方法。调查过程中,我们发现,数学学习好以后的生活经验:

1 。经常与长者的经验,甚至帮助老人处理一些琐事,如卖东西,买东西,假期之后的头,和等。
2。实际利益。休闲时间,很多人都在玩,逛街,我们调查一些大学生更愿意做一些具有实际意义的事情。提到一所大学的学生,初中的时候,他和一个朋友的自行车和一个卷尺测量领域的新校区。

第二部分:如何学习数学
适当的学习方法和学习习惯

>数学学科的多功能,有较强的逻辑性和系统性。学习掌握的数学知识,应该有更科学的学习方法,正确的方法,“功夫不负有心人”,更有效的方法是错误的,它会“吃力不讨好“事倍功半。学习效果,更多的研究,更多的兴趣,学习成绩始终不提,它会慢慢失去学习的信心。,是否掌握更科学的学习方法是学习成功的关键。根据出色的完成经验的学生数学学习的本质,我们相信,一个更科学的学习方法和习惯,主要表现为以下五个基本方面。

1,良好的预览的大师讲座主动。凡事预则立,不预则废。
2,注意在课堂上,良好的课堂笔记。讲座提前进入状态。课前准备讲座的效果直接影响

3,及时复习,把知识转化为技能。审查是在学习过程中的一个重要组成部分。评论有计划,有必要及时检讨一天的功课,也及时审查阶段。

4,完成工作认真,形成技能,提高分析问题和解决问题的能力,教育当局杨乐院士回答高中学生如何学习数学的问题,是非常简短的三句话:一类是基于了解和更多的实践,和第二的理解和积累的基础上,第三个是一步一步的实践这里所说的,是做标题,来完成这项工作。

5,及时总结,知识结构化和系统化。一个主题或一个章节的结束,它是要及时总结,每一个方面的程度如何的实施,直接关系到下一个环节的进展和成效。出席第一次彩排,第一次审查工作,常常阶段总结。

每天放学回家,你应该检讨作业的日子里,完成了一天的工作后,排练的第二天功课。这三样东西,一个也不能少,否则就不能保证第二天有一个高品质的演讲效果。
BR /> [提示:使用错题

平时的学习中,教师要求学生腾出一个错题,这很容易让学生回顾,但通常老师复习错题,这只是强调,学生很少问看到别人的错题本。事实上,学生往往借错题非常必要的。借注:

借第一高的水平比他们的同学的错题本,这是很容易丰富,拓宽自己的知识领域。其次,容易错误的问题往往比低级别的学生敲响了警钟。借用相同的时间,做自己的学习笔记,自己平时看到的。至少在开始一个星期有两个重复的读,一个星期后,两个多星期,所以逐渐,这种方法可以应用到其他各种学科。

,良好的动机和学习兴趣
BR />的动机是直接权力影响学生的学习动机和学习兴趣,教师和家长在调查中提到的鼓励的话,通过一些小技巧从小就学习数学的兴趣,促进学生的学习,使学生积极学习。如数学顺口溜,有趣的数学问题,数学讲的故事。自己的数学知识解决实际问题的成就,获得的成就感和自豪感感,计算面积?的书籍,轮胎圆周,大赛颁奖

华说:“有了兴趣已经厌倦了良好的不懈,随之而来的将腾出一些时间来学习的。”

三强的意志
>
正确的动机,并不意味着学生将能够成功地完成学习过程中,大,小,他们会遇到很多困难,在学习数学的过程中,让学生树立坚定的信心面对音乐,然后克服重重困难,获得知识和技能,你需要坚强的意志。许多学生的成绩差,是不是智力或其他方面的问题,但他们缺乏坚强的意志,克服困难,困难的“打退堂鼓,因此,学术总不能去了。学生顽强的意志和坚强决心,提高学生学习的自觉性和坚韧两方面。意识是指学生学习数学的目的和意义有深刻的认识,从而自觉地努力学习。当学生认识到这一点的学习和祖国的未来,他们未来的关系,明确职责,以排除干扰外界的诱惑,使学习成为人们的自觉行动。学习的目的是更清晰的认识更清晰的有意义的学习意识,较强的学习。坚韧的品质,做出不懈的努力,克服困难,完成学习任务。学生在学习过程中,总会遇到一些困难,迎难而上的信心,努力克服困难,表现的坚韧的意志。这是一个非常宝贵的品质。有了这种精神,学习困难或挫折时,不气馁,取得了良好的效果,并不会成为自满,而是要善于总结的经验教训,探索学习的规律和方法,奋勇向前。这将培养创新型人才的质量是非常必要的。

四,自我的信心和勤奋,自信和辛勤工作

也是数学学习上的两个非智力因素有着重要的影响。树立自信,相信自己通过努力学习数学,更重要的是后进生。由于学生的学习失去信心,就会失去克服困难的精神力量。此次收购的数学知识,技能,数学能力,从学生的勤奋和努力是分不开的。因此,学生勤奋好学,刻苦钻研的精神是非常重要的。 “的数学家章后说:”有没有捷径可走的道路上学习数学的多个机会,努力学习,持之以恒,会得到良好的结果。“可见,勤奋可以弥补一些学生缺乏智慧,促进学生数学能力的发展。

积极的态度

一个人的客观事物的情感态度和心理体验。我们的研究发现,任何数学始终保持良好的学生在小学和中学时代,往往与教师的情感交流,建立良好的师生关系,并且可以不断交流学习和学生遇到的问题,继续学习,分享经验,共同进步。

让我给你举个例子:李明比较好的数学系的学生数学问题要问他,他总是耐心帮助,以??帮助学生完成整个过程,他不仅帮助学生,并拥有一个更深入的了解数学知识。 “你有一个苹果,我有一个苹果,交换仍然是一个苹果,我有一个想法,你有一个想法,交换是两个概念。”李明相同的表,因为学习是很不错的,不敢向别人学习到的知识和能力做笔记的手必须阻止,看到的恐惧,使他的知识和老师传递给他,很快后面李铭许多。

通过上面的分析,我们发现,数学学习,其实是并不困难的。中成长的家庭与儿童,社会,学校有着密切的关系。建议家长给孩子看一些有益的书籍和视频,让更多的孩子参加有益的活动,为孩子的成长提供一个良好的环境。

我喜欢数学,我很害怕数学,我担心他们会不明白,不能学习。事实证明,在学习过程中遇到的困难。但足够的时间,我可以为标题的考前辅导班,老师讲时,他们不太了解,我发现缺乏内容和应用程序 - 老师不能说。观看一个频道会不会是这个问题,我真的想这样做,但是这是行不通的,只有要薄举例,慢慢地分析实例,总结出了解决问题的方法,做更多的事情,并逐渐成为使用。早在学校,我花了很多的时间做这样的计划可能会更加的最后一个繁忙的我挤时间预览,甚至放学后没有时间做练习,提出问题。老师在课堂上是如此之小,没有时间去巩固,数学的内容逐渐变得困难,我去的底部,然后我就干脆放下数学忙后最迫切的,然后拿出全面检讨。本次审查都面临着很大的困难,有时几个小时,仅使两个十几个问题,我坚持下来了,基本上找回丢失的内容。测试的方式来让自己感觉还是比较满意的结果。

初中学校数学课程分为两部分,代数和几何,略大于在中考中的比例,代数几何(我不知道你是哪里人,反正,在我们山东省,济南市,中考中的话)。
代数以下几点:1,合理的操作,主要讲有理数的三个操作(加法,减法,乘法和除法,幂运算的数字和字母符号意识处方)这里要注意的,是不是受主学校的影响,看到的字母数字不会做的题目。 2,融合三层计算,注意符号意识培训的,有分解,乘法和正始可互换注意,类似的差异的两个正方形式和完美的方式被使用时,逆和变形。 3,方程将在一,二元,三元二次的解决方案和应用的四个方程,记住,方程的方法,解决问题的一种手段。 4,功能,标识一个函数,二次函数的逆函数的图像,请记住它们的特性,根据应用程序的条件。特别要注意的辅助功能,这是测试的重点和难点。
几何应用题可以用它来的问题主要表现在以下几点:1,识别各种平面图形和立体图形,你应该很熟悉。 2图形的平移,旋转,轴对称,检查你的空间想象能力做更多的问题。 3,全等和相似三角形,将会证明,要注意有一个完整的流程和严格的步骤,也证明三角形全等的五种方法和证明的四种方法,像一个等腰三角形,直角的三角形和金三角的性质,得到应用,这将是非常有帮助的证明问题。 4,四边形,把握好平行四边形,长方形,正方形,菱形,梯形的概念选择轻微它们之间的区别,在身体上大做文章的,要注意他们的判断和考试的性质,也以证明其所有权。 5,圆,我有没有优良的学校在这里,因为这里是不是我们的重点在考试中,但圆将是非常困难的,它的很多知识,它被打破了,圆的问题是形成由许多小点。
以上是我总结的初中数学知识虚线谢谢你的麻烦!

I. 结合自己的实际思考对数学的认识(三四百字)

人们对数学的认识是随着时代的发展而发展的
(1)古代人们对数学的认识
古希腊的亚里士多德认为:数学是研究数量的科学。并说“数是一种离散的数量”,“线是一种连续的数量”。研究数及其属性(例如奇偶性、对称性以及比例关系等)的学问叫做算术,研究量及其属性(例如对称、相交、平行等)的学科叫做几何学。
(2)19世纪以前人们对数学的认识
数学史表明,在19世纪以前,古典数学的主要成就是算术、几何学、代数学、微积分。这些数学学科所研究的都是客观事物的空间形式和数量关系。对此, 恩格斯曾经概括为:“纯数学的研究对象是现实世界的空间形式和数量关系。”
(3)现代人们对数学的认识
布尔巴基学派就认为“数学是研究抽象结构的科学。”他们用结构的观点看待数学,认为最普遍、最基本的数学结构有代数结构、顺序结构、拓扑结构,这是三个母结构,此外还有许多各式各样的子结构,由母结构和某些子结构一起,形成某个数学分支的结构;
苏联着名数学家亚历山大洛夫在《数学——它的内容、方法和意义》一书中指出:“数学以纯粹形态的关系和形式作为自己的对象。”;
我国数学家丁石孙认为“数学的研究对象是客观世界的和逻辑可能的数学关系和结构关系。”;
还有不少数学家认为,只要扩充对有关数量关系和空间形式的理解,恩格斯的数学对象观仍然适用于现代数学。
目前,《全日制普通高级中学数学教学大纲》(试验修订版)在谈到数学的对象时,就是把恩格斯定义中的“现实世界”去掉了,即“数学是研究空间形式和数量关系的科学”。
这些观点从各个不同的侧面,对数学的对象作了较好的概括,在本质上是不矛盾的。既然人们尚未找到有关数学的更加确切、更为大众所接受的说法,
我们在这里暂时使用目前《全日制普通高级中学数学教学大纲》(试验修订版)的说法:“数学是研究空间形式和数量关系的

浅谈对数学史娜鲜?
〔 作者:丽泽中学李凌志 转贴自:本站原创 点击数:443 更新时间:2006-10-8 文章录入:丽泽中学 〕

浅谈对数学史的认识

首都师范大学附属丽泽中学

李凌志

一位教师心有感触地说:我们虽然教了这么多年数学,但所了解的数学史还真的不多,以后要通过各种渠道多学点数学史的知识,充实自已的“数学知识库”,让学生能在数学课中更多地感受数学的内在魅力。

一、学习数学史的意义

学习数学史对每一位数学工作者来讲都具有非常重要的意义,尤其是对于我们这些数学知识的传播者。我认为学习数学史的意义主要有以下三点: 1、数学史的科学意义

每一门科学都有其发展的历史,作为历史上的科学,既有其历史性又有其现实性。其现实性首先表现在科学概念与方法的延续性方面,今日的科学研究在某种程度上是对历史上科学传统的深化与发展,或者是对历史上科学难题的解决,因此我们无法割裂科学现实与科学史之间的联系。数学科学具有悠久的历史,与自然科学相比,数学更是积累性科学,其概念和方法更具有延续性,比如古代文明中形成的十进位值制记数法和四则运算法则,我们今天仍在使用,诸如费尔马猜想、哥德巴赫猜想等历史上的难题,长期以来一直是现代数论领域中的研究热点,数学传统与数学史材料可以在现实的数学研究中获得发展。国内外许多着名的数学大师都具有深厚的数学史修养或者兼及数学史研究,并善于从历史素材中汲取养分,做到古为今用,推陈出新。我国着名数学家吴文俊先生早年在拓扑学研究领域取得杰出成就,七十年代开始研究中国数学史,在中国数学史研究的理论和方法方面开创了新的局面,特别是在中国传统数学机械化思想的启发下,建立了被誉为“吴方法”的关于几何定理机器证明的数学机械化方法,他的工作不愧为古为今用,振兴民族文化的典范。 科学史的现实性还表现在为我们今日的科学研究提供经验教训和历史借鉴,以使我们明确科学研究的方向以少走弯路或错路,为当今科技发展决策的制定提供依据,也是我们预见科学未来的依据。多了解一些数学史知识,也不会致使我们出现诸如解决三等分角作图、证明四色定理等荒唐事,也避免我们在费尔马大定理等问题上白废时间和精力。同时,总结我国数学发展史上的经验教训,对我国当今数学发展不无益处。 2、数学史的文化意义

美国的一位数学史家曾经说过:“一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显”。“数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说”。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。因而数学史是从一个侧面反映的人类文化史,又是人类文明史的最重要的组成部分。许多历史学家通过数学这面镜子,了解古代其他主要文化的特征与价值取向。古希腊(公元前600年-公元前300年)数学家强调严密的推理和由此得出的结论,因此他们不关心这些成果的实用性,而是教育人们去进行抽象的推理,和激发人们对理想与美的追求。通过希腊数学史的考察,就十分容易理解,为什么古希腊具有很难为后世超越的优美文学、极端理性化的哲学,以及理想化的建筑与雕塑。而罗马数学史则告诉我们,罗马文化是外来的,罗马人缺乏独创精神而注重实用。 3、数学史的教育意义

当我们学习过数学史后,自然会有这样的感觉:数学的发展并不合逻辑,或者说,数学发展的实际情况与我们今日所学的数学教科书很不一致。我们今日中学所学的数学内容基本上属于17世纪微积分学以前的初等数学知识,而大学数学系学习的大部分内容则是17、18世纪的高等数学。这些数学教材业已经过千锤百炼,是在科学性与教育要求相结合的原则指导下经过反复编写的,是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是通过数学史的学习。 在一般学生看来,数学是一门枯燥无味的学科,因而他们中的很多人视其为畏途,从某种程度上说,这是由于我们的数学教科书教授的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样便可以激发学生的学习兴趣,也有助于学生对数学概念、方法和原理的理解与认识的深化。 科学史是一门文理交叉学科,从今天的教育现状来看,文科与理科的鸿沟导致我们的教育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的现代化社会,正是由于科学史的学科交叉性才可显示其在沟通文理科方面的作用。通过数学史学习,可以使数学系的学生在接受数学专业训练的同时,获得人文科学方面的修养,文科或其它专业的学生通过数学史的学习可以了解数学概貌,获得数理方面的修养。而历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。 中国数学有着悠久的历史,14世纪以前一直是世界上数学最为发达的国家,出现过许多杰出数学家,取得了很多辉煌成就,其渊源流长的以计算为中心、具有程序性和机械性的算法化数学模式与古希腊的以几何定理的演绎推理为特征的公理化数学模式相辉映,交替影响世界数学的发展。由于各种复杂的原因,16世纪以后中国变为数学入超国,经历了漫长而艰难的发展历程才渐渐汇入现代数学的潮流。由于教育上的失误,致使接受现代数学文明熏陶的我们,往往数典忘祖,对祖国的传统科学一无所知。数学史可以使学生了解中国古代数学的辉煌成就,了解中国近代数学落后的原因,中国现代数学研究的现状以及与发达国家数学的差距,以激发学生的爱国热情,振兴民族科学。

二、数学史的学习对于数学教学的作用 1、考察历史,进行爱国主义教育

我国有着光辉灿烂的数学史。许多古代杰出的数学成就对古代人类文明有着重要的影响。在中学数学课本中收入了许多这方面的生动素材。深入挖掘教材中的爱国主义教育因素,结合有关数学内容,介绍我国数学发展的历史,介绍我国古代科学家的杰出成就,介绍现代中国人对数学发展的巨大贡献,可以激发学生强烈的民族自尊心、自信心、自豪感和爱国热情。例如,在教简单几何图形面积的计算公式时,恰当地向学生介绍我国古代数学史上的以《九章算术》为代表的一系列传世名着,;在教负数时,简介负数的出现及在数学中使用的由来等;在教圆时,简介南北朝的着名数学家祖冲之在全世界算出3.1415926<π<3.1415927以及π的创立、演化过程等。这些成果都是我国劳动人民伟大的智慧结晶,是我国传统数学的宝贵财富。而且有许多成果在世界数学史上曾处于遥遥领先的地位。如开方术,正负数运算法则,线性方程组的理论,高次方程的解法等都是世界上最早的。其中一元二次方程的数值解法、联立方程的解法比西方同类解法早1500年左右,解方程设未知数的方法比西方早500多年。二项展开式中系数的求法即“杨辉三角形”比西方早400—600年。在现代数学发展过程中,中国人以其特有的聪明才智和勤奋同样取得了许多重大的研究成果。例如,苏步青、华罗庚、陈省身、陈景洞、吴文俊等都对数学的发展作出了卓越贡献,他们的爱国主义精神也将为世人铭记。根据教学内容适当介绍我国数学史上的成就,不仅能激发学生民族自尊性、自信性和爱国热情,而且还能激励他们继承和弘扬我国古今数学家勇于探索、不断进取的拼搏精神。 2、 考察历史,塑造主体人格

《新课程标准》引领下的数学教学,不仅要让学生掌握基本的数学知识与技能,还要让学生拥有解决实践问题的数学思想与方法,更要形成良好的情感态度。要实现这些目标的核心所在就是要让学生对数学本身产生浓厚的兴趣。向学生介绍一些数学史的知识是激发学生学习数学动机的有效策略。

主体人格,目前尚无统一界说。依笔者之见,其主要内涵应包括强烈的求知欲和好奇心;广泛的兴趣和开拓创新精神;顽强的毅力和坚定信念;自信、自尊、自律等主体人格是人的主体性发挥的催化剂和激素。因为如果一个人没有主体人格因素的推动、激活和引发,即使他有再大的认识和实践能力,也难以发挥出来同样道理,学生的主体人格因素也是其主体性素质不可或缺的重要内容。 从某种意义上讲,数学发展史就是一部创造、发明的演化史。因而其中自然蕴藏着数学家们崇尚科学的情感和价值观,严肃认真的科学态度和良好的品格修养,追求科学的顽强毅力和不断开拓、进取、创新精神等重历史考察就是挖掘教材中的这些潜在素材,发挥数学史可以给人以智慧的功能,从而达到塑造学生主体人格之目的。 考察历史,就是要求教师结合教学内容讲述一些数学发明、创造的轶闻故事。如在教“圆锥曲线”时,教师可讲述“圆锥曲线”的发现故事。虽然公元前35O年梅尼莫就发现了圆锥曲线,后经阿波罗尼阿斯的苦心研究,已发展成为相当完美的结论,然而,在随后的近2000年间却找不到实际背景,直到开普勒、牛顿用它来研究行星的轨道才取得巨大成功。而当时这个开普勒第一定律与人们的认识却又十分相悖,因此这一发现给人们带来的震惊是可想而知的。 这一讲述不仅丰富了学生对圆锥曲线的感性认识,而且还激发了学生求知欲,学习兴趣和求异创新精神。 考察历史,还要求教师结合教学内容简介一些数学概念,原理及公式等的演化史知识。如,在教“归纳法” 时,教师可简介数学归纳法的演化史。在数学中常把由某一序列的元素a1,a2,……,an过渡到某一个元素an+1的过程称为“递归”,因而数学归纳法是一种递归方法,而且是人们最早掌握的递归方法之一。最先在数学中采用递归思想的要算古希腊数学家欧几里德。近代最先试图用递归方法证明数学命题的人是意大利数学家F•毛罗利科;最先明确而清晰地阐述并使用了数学归纳法的是法国数学家B•帕斯。现在使用的“数学归纳法”这一名称是英国数学家、逻辑学家A•德摩根提出来的等。 教师若能如此,不仅能丰富学生的数学史知识,而且还能有效地激发学生的求知欲、求异性、创新精神等主体人格发展。

J. 对数学的看法200字

对于数学,我们作为学生并不陌生,从小学的加减乘除,到初中的各种平面几何,再到高中的各种函数等等等等,都透着数种数学思想。数学是特别严谨的,是具有高级逻辑性的。数学不同于其他学科,它既能解决数学本身的抽象问题,还能派生出无数种实际问题的解法。数学的推理不仅在上学时期有用,在以后的时间里,更具有无与伦比的价值魅力。对于数学,我认为是需要用一生的时间去探求,摸索的。特别是平面图形之间的复杂关系,是无数人探求了多长时间也无法学尽的。

阅读全文

与数学的思想与认识怎么写相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:736
乙酸乙酯化学式怎么算 浏览:1400
沈阳初中的数学是什么版本的 浏览:1347
华为手机家人共享如何查看地理位置 浏览:1038
一氧化碳还原氧化铝化学方程式怎么配平 浏览:880
数学c什么意思是什么意思是什么 浏览:1404
中考初中地理如何补 浏览:1294
360浏览器历史在哪里下载迅雷下载 浏览:697
数学奥数卡怎么办 浏览:1384
如何回答地理是什么 浏览:1018
win7如何删除电脑文件浏览历史 浏览:1050
大学物理实验干什么用的到 浏览:1480
二年级上册数学框框怎么填 浏览:1695
西安瑞禧生物科技有限公司怎么样 浏览:961
武大的分析化学怎么样 浏览:1243
ige电化学发光偏高怎么办 浏览:1333
学而思初中英语和语文怎么样 浏览:1646
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1482
数学中的棱的意思是什么 浏览:1053