导航:首页 > 数字科学 > 小学生数学题目类型有哪些

小学生数学题目类型有哪些

发布时间:2023-02-10 15:57:44

Ⅰ 小学一年级数学分类题有哪些

小学一年级数学分类题有:

一、求总数

1、花丛中飞走了28只蝴蝶,又飞走了9只,两次飞走了多少只?

2、马场上有39匹马,又来了50匹,现在马场上有多少匹?

3、一条公路两旁各种上40棵树,一共种多少棵树?

4、小明种了5棵花,小华、小红种的花和小明种的同样多。他们一共种了多少棵花?

5、一年(2)班有男同学34人,女同学20人,一年(2)班有学生多少人?

6、妈妈想买一件衣服,带了68元,还差7元,这件衣服一共需要多少钱?

二、求大数

1、小东有15本故事书,小东比小林少8本,小林有多少本故事书?

2、一本故事书8元,一本字典的价钱比一本故事书贵5元,一本字典多少钱?

3、红花27朵,黄花比红花多8朵,黄花有多少朵?

4、小明有60张邮票,小东比小明多10张,小东有多少张邮票?

5、一个数是70,另一个数比它多15,另一个数是多少?

6、小华做了20个信封,小亮比小华多做6个,小亮做了多少个?

三、求部分数

1、一本书有30页,小林看了9页,还剩多少页?

2、乐乐有10元,买了一本课外书7元,找回多少钱?

3、小红家有苹果和梨子共13个,苹果有4个,梨子有多少个?

4、汽车总站有13辆汽车,开走了3辆,还有几辆?

5、书架上有36本书,拿走了一些,书架上还有9本书,拿走了多少本?

6、一组和二组同学一共折了58只纸鹤,其中二组折了30只,一组折了多少只?

四、求小数

1、一个数是60,另一个数比它少20,另一个数是多少?

2、小红折了50朵花,小青折的比小红少20朵,小青折了多少朵?

3、饲养组有30只公鸡,公鸡比母鸡多8只,有母鸡多少只?

4、比75少8的数是多少?

5、一件上衣80元,一条裤子比一件上衣便宜20元,一条裤子多少钱?

五、求相差数

1、小青两次画了17朵小花 ,第一次画了9朵小花,第二次比第一次少画了多少朵?

2、小灰免采了17个松果,小白兔采了8个,小灰兔比小白兔多采几个松果?

3、小青上午采摘了13箱草莓,下午采摘了8箱,上午比下午多摘了几箱?

4、小东折了30朵红花,小青折了20朵,小青再折了多少朵就和小东同样多?

5、一本课外书50页,小华看了20页,已看的比未看的少多少页?

Ⅱ 小学数学的应用题类型

小学数学的应用题类型汇总

应用题是指将所学知识应用到实际生活实践的题目,在数学上,应用题分两大类:一个是数学应用。另一个是实际应用。我整理的小学数学的应用题类型,供参考!

一、一般应用题

一般应用题没有固定的结构,也没有解题规律可循,完全要依赖分析题目的数量关系找出解题的线索。

要点:从条件入手?从问题入?

从条件入手分析时,要随时注意题目的问题

从问题入手分析时,要随时注意题目的已知条件。

例题如下:

某五金厂一车间要生产1100个零件,已经生产了5天,平均每天生产130个。剩下的如果平均每天生产150个,还需几天完成?

思路分析:

已知“已经生产了5天,平均每天生产130个”,就可以求出已经生产的个数。

已知“要生产1100个机器零件”和已经生产的个数,已知“剩下的平均每天生产150个”,就可以求出还需几天完成。

二、典型应用题

用两步或两步以上运算解答的应用题中,有的题目由于具有特殊的结构,因而可以用特定的步骤和方法来解答,这样的应用题通常称为典型应用题。

(一)求平均数应用题

解答求平均数问题的规律是:

总数量÷对应总份数=平均数

注:在这类应用题中,我们要抓住的是对应,可根据总数量来划分成不同的子数量,再一一地根据子数量找出各自的份数,最终得出对应关系。

例题一如下:

一台碾米机,上午4小时碾米1360千克,下午3小时碾米1096千克,这天平均每小时碾米约多少千克?

思路分析:

要求这天平均每小时碾米约多少千克,需解决以下三个问题:

1、这一天总共碾了多少米?(一天包括上午、下午)。

2、这一天总共工作了多少小时?(上午的4小时,下午的3小时)。

3、这一天的总数量是多少?这一天的总份数是多少?(从而找出了对应关系,问题也就得到了解决。)

(二)归一问题

归一问题的题目结构是:

题目的前部分是已知条件,是一组相关联的量;

题目的后半部分是问题,也是一组相关联的量,其中有一个量是未知的。

解题规律是,先求出单一的量,然后再根据问题,或求单一量的几倍是多少,或求有几个单一量。

例题如下:

6台拖拉机4小时耕地300亩,照这样计数,8台拖拉机7小时可耕地多少亩?

思路分析:

先求出单一量,即1台拖拉机1小时耕地的亩数,再求8台拖拉机7小时耕地的亩数。

(三)相遇问题

指两运动物体从两地以不同的速度作相向运动。

相遇问题的基本关系是:

1、相遇时间=相隔距离(两个物体运动时)÷速度和。

例题如下:两地相距500米,小红和小明同时从两地相向而行,小红每分钟行60米,小明每分钟行65米,几分钟相遇?

2、相隔距离(两物体运动时)=速度之和×相遇时间

例题如下:一列客车和一列货车分别从甲乙两地同时相对开出,10小时后在途中相遇。已知货车平均每小时行45千米,客车每小时的速度比货车快20﹪,求甲乙相距多少千米?

3、甲速=相隔距离(两个物体运动时)÷相遇时间-乙速

例题如下:一列货车和一列客车同时从相距648千米的两地相对开出,4.5小时相遇。客车每小时行80千米,货车每小时行多少千米?

相遇问题可以有不少变化。

如两个物体从两地相向而行,但不同时出发;

或者其中一个物体中途停顿了一下;

或两个运动的物体相遇后又各自继续走了一段距离等,都要结合具体情况进行分析。

另:相遇问题可以引申为工程问题:即工效和×合做时间=工作总量

三、分数和百分数应用题

分数和百分数的基本应用题有三种,下面分别谈一谈每种应用题的特征和解题的规律。

(一)求一个数是另一个数的百分之几

这类问题的结构特征是,已知两个数量,所求问题是这两个量间的百分率。

求一个数是另一个数的百分之几与求一个数是另一个数的几倍或几分之几的实质是一样的,只不过计算结果用百分数表示罢了,所以求一个数是另一数的百分之几时,要用除法计算。

解题的一般规律是:设a、b是两个数,当求a是b的百分之几时,列式是a÷b。解答这类应用题时,关键是理解问题的含意。

例题如下:

养猪专业户李阿姨去年养猪350头,今年比去年多养猪60头,今年比去年多养猪百分之几?

思路分析:

问题的含义是:今年比去年多养猪的头数是去年养猪头数的百分之几。所以应用今年比去年多养猪的头数去÷去年养猪的头数,然后把所得的结果转化成百分数。

(二)求一个数的几分之几或百分之几

求一个数的几分之几或百分之几是多少,都用乘法计算。

解答这类问题时,要从反映两个数的倍数关系的那个已知条件入手分析,先确定单位“1”,然后确定求单位“1”的几分之几或百分之几。

(三)已知一个数的几分之几或百分之几是多少,求这个数

这类应用题可以用方程来解,也可以用算术法来解。

用算术方法解时,要用除法计算。

解答这类应用题时,也要反映两个数的倍数关系的已知条件入手分析:

先确定单位“1”,再确定单位“1”的几分之几或百分之几是多少。

一些稍难的应用题,可以画图帮助分析数量关系。

(四)工程问题

工程问题是研究工作效率、工作时间和工作总量的问题。

这类题目的特点是:

工作总量没有给出实际数量,把它看做“1”,工作效率用来表示,所求问题大多是合作时间。

例题如下:

一件工程,甲工程队修建需要8天,乙工程队修建需要12天,两队合修4天后,剩下的任务,有乙工程队单独修,还需几天?

思路分析:

把一件工程的工作量看作“1”,则甲的工作效率是1/8,乙的工作效率是1/12。

已知两队合修了4天,就可求出合修的工作量,进而也就能求出剩下的工作量。

用剩下的工作量除以乙的工作效率,就是还需要几天完成。

四、比和比例应用题

比和比例应用题是小学数学应用题的重要组成部分。在小学中,比的应用题包括:比例尺应用题和按比例分配应用题,正、反比例应用题。

(一)比例尺应用题

这种应用题是研究图上距离、实际距离和比例尺三者之间的关系的。

解答这类应用题时,最主要的是要清楚比例尺的意义,即:

图上距离÷实际距离=比例尺

根据这个关系式,已知三者之间的任意两个量,就可以求出第三个未知的.量。

例题如下:

在比例尺是1:3000000的地图上,量得A城到B城的距离是8厘米,A城到B城的实际距离是多少千米?

思路分析:

把比例尺写成分数的形式,把实际距离设为x,代入比例尺的关系式就可解答了。所设未知数的计量单位名称要与已知的计量单位名称相同。

(二)按比例分配应用题

这类应用题的特点是:把一个数量按照一定的比分成两部分或几部分,求各部分的数量是多少。

这是学生在小学阶段唯一接触到的不平均分问题。

这类应用题的解题规律是:

先求出各部分的份数和,在确定各部分量占总数量的几分之几,最后根据求一个数的几分之几是多少,用乘法计算,求出各部分的数量。

按比例分配也可以用归一法来解。

例题如下:

一种农药溶液是用药粉加水配制而成的,药粉和水的重量比是1:100。2500千克水需要药粉多少千克?5.5千克药粉需加水多少千克?

思路分析:

已知药和水的份数,就可以知道药和水的总份数之和,也就可以知道药和水各自占总份数的几分之几,知道了分率,相应地也就可以求出各自相对量。

(三)正、反比例应用题

解答这类应用题,关键是判断题目中的两种相关联的量是成正比里的量,还是成反比例的量。

如果用字母x、y表示两种相关联的量,用K表示比值(一定),两种相向关联的量成正比例时,用下面的式子来表示:

kx=y(一定)。

如果两种相关联的量成反比例时,可用下面的式子来表示:

×y=K(一定)。

例题如下:

六一玩具厂要生产2080套儿童玩具。前6天生产了960套,照这样计算,完成全部任务共需要多少天?

思路分析:

因为工作总量÷工作时间=工作效率,已知工作效率一定,所以工作总量与工作时间成正比例。

;

Ⅲ 小学数学归纳汇总,具体分为哪几种题型

我们在小学的学习中,数学常常是让人头疼的一门科目了。我们在学习数学的过程中,要学会总结和回顾,这样会使我们对自己所学习的内容有一个清晰地了解,对总的知识点有个合理的分析。下面总结小学数学的一些题型。

小学数学的知识点对小学生来说还是比较多的,要做好归纳总结,以上就是总结出的一部分题型。

Ⅳ 小学数学专题有哪些

一、如果按照教材分类可以分为如下四个专题
1、数与代数:数的认识、数的运算、常见的量、式与方程、探索规律
2、空间与图形:图形的认识、测 量、图形和变换、图形与位置
3、统计与概率:数据统计初步、不确定现象、可能性
4、实践与综合运用
二、如果按照思维训练分类可以分为如下五个专题
1、计算:速算与巧算、数字谜、数列求和、数的拆分、定义新运算、比较和估算
2、应用题综合:植树问题、盈亏问题、行程问题 、平均数问题、浓度问题、牛吃草问题、年龄问题、经济问题 、鸡兔同笼问题、和差问题、和倍问题、工程问题、分数百分数问题、差倍问题
3、数论综合:质数与合数、约数与倍数、数的整除性、数的进制、奇数与偶数、个位律、带余除法
4、几何图形:直线型面积、曲线型面积 、立体几何
5、几个数学专题:智巧趣题、统筹优化、容斥原理、逻辑推理、计数问题 、构造与论证、抽屉原理、操作问题(策略、染色)

Ⅳ 小学数学典型应用题有哪些类型

1 归一问题
【含义】 在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。

【数量关系】 总量÷份数=1份数量 1份数量×所占份数=所求几份的数量
另一总量÷(总量÷份数)=所求份数

【解题思路和方法】 先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?
解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)
(2)买16支铅笔需要多少钱?0.12×16=1.92(元)
列成综合算式 0.6÷5×16=0.12×16=1.92(元)
答:需要1.92元。
例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?
解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)
(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)
列成综合算式 90÷3÷3×5×6=10×30=300(公顷)
答:5台拖拉机6 天耕地300公顷。
例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?
解 (1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨)
(2)7辆汽车1次能运多少吨钢材? 5×7=35(吨)
(3)105吨钢材7辆汽车需要运几次? 105÷35=3(次)
列成综合算式 105÷(100÷5÷4×7)=3(次)
答:需要运3次。
2 归总问题
【含义】 解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】 1份数量×份数=总量 总量÷1份数量=份数
总量÷另一份数=另一每份数量

【解题思路和方法】 先求出总数量,再根据题意得出所求的数量。
例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?
解 (1)这批布总共有多少米? 3.2×791=2531.2(米)
(2)现在可以做多少套? 2531.2÷2.8=904(套)
列成综合算式 3.2×791÷2.8=904(套)
答:现在可以做904套。
例2 小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》?
解 (1)《红岩》这本书总共多少页? 24×12=288(页)
(2)小明几天可以读完《红岩》? 288÷36=8(天)
列成综合算式 24×12÷36=8(天)
答:小明8天可以读完《红岩》。
例3 食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?
解 (1)这批蔬菜共有多少千克? 50×30=1500(千克)
(2)这批蔬菜可以吃多少天? 1500÷(50+10)=25(天)
列成综合算式 50×30÷(50+10)=1500÷60=25(天)
答:这批蔬菜可以吃25天。
3 和差问题
【含义】 已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】 大数=(和+差)÷ 2 小数=(和-差)÷ 2

【解题思路和方法】 简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?
解 甲班人数=(98+6)÷2=52(人)
乙班人数=(98-6)÷2=46(人)
答:甲班有52人,乙班有46人。
例2 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。
解 长=(18+2)÷2=10(厘米) 宽=(18-2)÷2=8(厘米)
长方形的面积 =10×8=80(平方厘米)
答:长方形的面积为80平方厘米。
例3 有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。
解 甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。由此可知
甲袋化肥重量=(22+2)÷2=12(千克)
丙袋化肥重量=(22-2)÷2=10(千克)
乙袋化肥重量=32-12=20(千克)
答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。
例4 甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?
解 “从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(14×2+3),甲与乙的和是97,因此 甲车筐数=(97+14×2+3)÷2=64(筐)
乙车筐数=97-64=33(筐)
答:甲车原来装苹果64筐,乙车原来装苹果33筐。
4 和倍问题
【含义】 已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

【数量关系】 总和 ÷(几倍+1)=较小的数 总和 - 较小的数 = 较大的数
较小的数 ×几倍 = 较大的数

【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。

例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?
解 (1)杏树有多少棵? 248÷(3+1)=62(棵)
(2)桃树有多少棵? 62×3=186(棵)
答:杏树有62棵,桃树有186棵。
例2 东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?
解 (1)西库存粮数=480÷(1.4+1)=200(吨)
(2)东库存粮数=480-200=280(吨)
答:东库存粮280吨,西库存粮200吨。
例3 甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?
解 每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,那么,几天以后甲站的车辆数减少为 (52+32)÷(2+1)=28(辆)
所求天数为 (52-28)÷(28-24)=6(天)
答:6天以后乙站车辆数是甲站的2倍。
例4 甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?
解 乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。
因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;
又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;
这时(170+4-6)就相当于(1+2+3)倍。那么,
甲数=(170+4-6)÷(1+2+3)=28
乙数=28×2-4=52
丙数=28×3+6=90
答:甲数是28,乙数是52,丙数是90。
5 差倍问题
【含义】 已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。

【数量关系】 两个数的差÷(几倍-1)=较小的数
较小的数×几倍=较大的数

【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。

例1 果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵?
解 (1)杏树有多少棵? 124÷(3-1)=62(棵)
(2)桃树有多少棵? 62×3=186(棵)
答:果园里杏树是62棵,桃树是186棵。
例2 爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?
解 (1)儿子年龄=27÷(4-1)=9(岁)
(2)爸爸年龄=9×4=36(岁)
答:父子二人今年的年龄分别是36岁和9岁。
例3 商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?
解 如果把上月盈利作为1倍量,则(30-12)万元就相当于上月盈利的(2-1)倍,因此 上月盈利=(30-12)÷(2-1)=18(万元)
本月盈利=18+30=48(万元)
答:上月盈利是18万元,本月盈利是48万元。
例4 粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?
解 由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(138-94)。把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(138-94)就相当于(3-1)倍,因此
剩下的小麦数量=(138-94)÷(3-1)=22(吨)
运出的小麦数量=94-22=72(吨)
运粮的天数=72÷9=8(天)
答:8天以后剩下的玉米是小麦的3倍。
6 倍比问题
【含义】 有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。

【数量关系】 总量÷一个数量=倍数 另一个数量×倍数=另一总量

【解题思路和方法】 先求出倍数,再用倍比关系求出要求的数。

例1 100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?
解 (1)3700千克是100千克的多少倍? 3700÷100=37(倍)
(2)可以榨油多少千克? 40×37=1480(千克)
列成综合算式 40×(3700÷100)=1480(千克)
答:可以榨油1480千克。
例2 今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?
解 (1)48000名是300名的多少倍? 48000÷300=160(倍)
(2)共植树多少棵? 400×160=64000(棵)
列成综合算式 400×(48000÷300)=64000(棵)
答:全县48000名师生共植树64000棵。
例3 凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?
解 (1)800亩是4亩的几倍? 800÷4=200(倍)
(2)800亩收入多少元? 11111×200=2222200(元)
(3)16000亩是800亩的几倍?16000÷800=20(倍)
(4)16000亩收入多少元? 2222200×20=44444000(元)
答:全乡800亩果园共收入2222200元,全县16000亩果园共收入
44444000元。
7 相遇问题
【含义】 两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。

【数量关系】 相遇时间=总路程÷(甲速+乙速)
总路程=(甲速+乙速)×相遇时间

【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。

例1 南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?
解 392÷(28+21)=8(小时)
答:经过8小时两船相遇。
例2 小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?
解 “第二次相遇”可以理解为二人跑了两圈。因此总路程为400×2
相遇时间=(400×2)÷(5+3)=100(秒)
答:二人从出发到第二次相遇需100秒时间。
例3 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
解 “两人在距中点3千米处相遇”是正确理解本题题意的关键。从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,
相遇时间=(3×2)÷(15-13)=3(小时)
两地距离=(15+13)×3=84(千米)
答:两地距离是84千米。
8 追及问题
【含义】 两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。
【数量关系】 追及时间=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及时间
【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。

例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?
解 (1)劣马先走12天能走多少千米? 75×12=900(千米)
(2)好马几天追上劣马? 900÷(120-75)=20(天)
列成综合算式 75×12÷(120-75)=900÷45=20(天)
答:好马20天能追上劣马。
例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。
解 小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用〔40×(500÷200)〕秒,所以小亮的速度是 (500-200)÷〔40×(500÷200)〕=300÷100=3(米)
答:小亮的速度是每秒3米。
例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?
解 敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是〔10×(22-6)〕千米,甲乙两地相距60千米。由此推知
追及时间=〔10×(22-6)+60〕÷(30-10)=220÷20=11(小时)
答:解放军在11小时后可以追上敌人。
例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。
解 这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,
这个时间为 16×2÷(48-40)=4(小时)
所以两站间的距离为 (48+40)×4=352(千米)
列成综合算式 (48+40)×〔16×2÷(48-40)〕=88×4=352(千米)
答:甲乙两站的距离是352千米。
例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?
解 要求距离,速度已知,所以关键是求出相遇时间。从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,那么,二人从家出走到相遇所用时间为
180×2÷(90-60)=12(分钟)
家离学校的距离为 90×12-180=900(米)
答:家离学校有900米远。
例6 孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比原来步行早9分钟到学校。求孙亮跑步的速度。
解 手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(10-5)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(10-5)分钟。如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用〔9-(10-5)〕分钟。所以
步行1千米所用时间为 1÷〔9-(10-5)〕=0.25(小时)=15(分钟)
跑步1千米所用时间为 15-〔9-(10-5)〕=11(分钟)
跑步速度为每小时 1÷11/60=1×60/11=5.5(千米)
答:孙亮跑步速度为每小时5.5千米。
9 植树问题
【含义】 按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。

【数量关系】 线形植树 棵数=距离÷棵距+1
环形植树 棵数=距离÷棵距
方形植树 棵数=距离÷棵距-4
三角形植树 棵数=距离÷棵距-3
面积植树 棵数=面积÷(棵距×行距)

【解题思路和方法】 先弄清楚植树问题的类型,然后可以利用公式。

例1 一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?
解 136÷2+1=68+1=69(棵)
答:一共要栽69棵垂柳。
例2 一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?
解 400÷4=100(棵)
答:一共能栽100棵白杨树。
例3 一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?
解 220×4÷8-4=110-4=106(个)
答:一共可以安装106个照明灯。
例4 给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?
解 96÷(0.6×0.4)=96÷0.24=400(块)
答:至少需要400块地板砖。
例5 一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?
解 (1)桥的一边有多少个电杆? 500÷50+1=11(个)
(2)桥的两边有多少个电杆? 11×2=22(个)
(3)大桥两边可安装多少盏路灯?22×2=44(盏)
答:大桥两边一共可以安装44盏路灯。
10 年龄问题
【含义】 这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。

【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。

【解题思路和方法】 可以利用“差倍问题”的解题思路和方法。

例1 爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?
解 35÷5=7(倍) (35+1)÷(5+1)=6(倍)
答:今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍。
例2 母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?
解 (1)母亲比女儿的年龄大多少岁? 37-7=30(岁)
(2)几年后母亲的年龄是女儿的4倍?30÷(4-1)-7=3(年)
列成综合算式 (37-7)÷(4-1)-7=3(年)
答:3年后母亲的年龄是女儿的4倍。
例3 3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁?
解 今年父子的年龄和应该比3年前增加(3×2)岁,今年二人的年龄和为 49+3×2=55(岁)
把今年儿子年龄作为1倍量,则今年父子年龄和相当于(4+1)倍,因此,今年儿子年龄为
55÷(4+1)=11(岁)
今年父亲年龄为 11×4=44(岁)
答:今年父亲年龄是44岁,儿子年龄是11岁。
例4 甲对乙说:“当我的岁数曾经是你现在的岁数时,你才4岁”。乙对甲说:“当我的岁数将来是你现在的岁数时,你将61岁”。求甲乙现在的岁数各是多少?

这里涉及到三个年份:过去某一年、今年、将来某一年。列表分析:
过去某一年 今 年 将来某一年
甲 □岁 △岁 61岁
乙 4岁 □岁 △岁
表中两个“□”表示同一个数,两个“△”表示同一个数。
因为两个人的年龄差总相等:□-4=△-□=61-△,也就是4,□,△,61成等差数列,所以,61应该比4大3个年龄差,因此二人年龄差为 (61-4)÷3=19(岁)
甲今年的岁数为 △=61-19=42(岁)
乙今年的岁数为 □=42-19=23(岁)
答:甲今年的岁数是42岁,乙今年的岁数是23岁。
11 行船问题
【含义】 行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。

【数量关系】 (顺水速度+逆水速度)÷2=船速
(顺水速度-逆水速度)÷2=水速
顺水速=船速×2-逆水速=逆水速+水速×2
逆水速=船速×2-顺水速=顺水速-水速×2

【解题思路和方法】 大多数情况可以直接利用数量关系的公式。

例1 一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?
解 由条件知,顺水速=船速+水速=320÷8,而水速为每小时15千米,所以,船速为每小时 320÷8-15=25(千米)
船的逆水速为 25-15=10(千米)
船逆水行这段路程的时间为 320÷10=32(小时)
答:这只船逆水行这段路程需用32小时。
例2 甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?
解由题意得 甲船速+水速=360÷10=36
甲船速-水速=360÷18=20
可见 (36-20)相当于水速的2倍,
所以, 水速为每小时(36-20)÷2=8(千米)
又因为, 乙船速-水速=360÷15,
所以, 乙船速为 360÷15+8=32(千米)
乙船顺水速为 32+8=40(千米)
所以, 乙船顺水航行360千米需要 360÷40=9(小时)
答:乙船返回原地需要9小时。
例3 一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时?
解 这道题可以按照流水问题来解答。
(1)两城相距多少千米? (576-24)×3=1656(千米)
(2)顺风飞回需要多少小时? 1656÷(576+24)=2.76(小时)
列成综合算式〔(576-24)×3〕÷(576+24)=2.76(小时)
答:飞机顺风飞回需要2.76小时。

Ⅵ 小学数学应用题包括哪些种类

有以下30类典型应用题:

1、归一问题
2、归总问题
3、和差问题
4、和倍问题
5、差倍问题
6、倍比问题
7、相遇问题
8、追及问题
9、植树问题
10、年龄问题

11、行船问题
12、列车问题
13、时钟问题
14、盈亏问题
15、工程问题
16、正反比例问题
17、按比例分配
18、百分数问题
19、“牛吃草”问题
20、鸡兔同笼问题

21、方阵问题
22、商品利润问题
23、存款利率问题
24、溶液浓度问题
25、构图布数问题
26、幻方问题
27、抽屉原则问题
28、公约公倍问题
29、最值问题
30、列方程问题

Ⅶ 小学六年级有哪几种类型的数学题,如:解决问题类、计算类…………

1、画图类,2、解决问题类,3、方程类,4、计算类,5、选择类,6、填空类,7、判断类,貌似只有这几种,望楼主采纳!

Ⅷ 小学数学应用题分类及题

典型应用题
具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。
(1)平均数问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。
加权平均数:已知两个以上若干份的平均数,求总平均数是多少。
数量关系式 (部分平均数×权数)的总和÷(权数的和)=加权平均数。
差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。
数量关系式:(大数-小数)÷2=小数应得数 最大数与各数之差的和÷总份数=最大数应给数 最大数与个数之差的和÷总份数=最小数应得数。
例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。
分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为 100 ,所用的时间为 ,汽车从乙地到甲地速度为 60 千米 ,所用的时间是 ,汽车共行的时间为 + = , 汽车的平均速度为 2 ÷ =75 (千米)

(2) 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。
根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。
一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”
两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”
正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。
反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。
解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。
数量关系式:单一量×份数=总数量(正归一)
总数量÷单一量=份数(反归一)
例 一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米 ,需要多少天?
分析:必须先求出平均每天织布多少米,就是单一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)

(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。
特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。
数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量 单位数量×单位个数÷另一个单位数量= 另一个单位数量。
例 修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米?
分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。 80 0 × 6 ÷ 4=1200 (米)

(4) 和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。
解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。
解题规律:(和+差)÷2 = 大数 大数-差=小数
(和-差)÷2=小数 和-小数= 大数
例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?
分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 - 87=7 (人)

(5)和倍问题:已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。
解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。
解题规律:和÷倍数和=标准数 标准数×倍数=另一个数
例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?
分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 。
列式为( 115-7 )÷( 5+1 ) =18 (辆), 18 × 5+7=97 (辆)

(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。
解题规律:两个数的差÷(倍数-1 )= 标准数 标准数×倍数=另一个数。
例 甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?
分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式( 63-29 )÷( 3-1 ) =17 (米)…乙绳剩下的长度, 17 × 3=51 (米)…甲绳剩下的长度, 29-17=12 (米)…剪去的长度。

(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
解题关键及规律:
同时同地相背而行:路程=速度和×时间。
同时相向而行:相遇时间=速度和×时间
同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。
同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。
例 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙?
分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。
已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。列式 2 8 ÷ ( 16-9 ) =4 (小时)

(8)流水问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。
船速:船在静水中航行的速度。
水速:水流动的速度。
顺水速度:船顺流航行的速度。
逆水速度:船逆流航行的速度。
顺速=船速+水速
逆速=船速-水速
解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。 解题时要以水流为线索。
解题规律:船行速度=(顺水速度+ 逆流速度)÷2
流水速度=(顺流速度逆流速度)÷2
路程=顺流速度× 顺流航行所需时间
路程=逆流速度×逆流航行所需时间
例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米?
分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。已知顺水速度和水流 速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。列式为 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小时) 28 × 5=140 (千米)。

(9) 还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。
解题关键:要弄清每一步变化与未知数的关系。
解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。
根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。
解答还原问题时注意观察运算的顺序。若需要先算加减法,后算乘除法时别忘记写括号。
例 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人?
分析:当四个班人数相等时,应为 168 ÷ 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。四班原有人数列式为 168 ÷ 4-2+3=43 (人)
一班原有人数列式为 168 ÷ 4-6+2=38 (人);二班原有人数列式为 168 ÷ 4-6+6=42 (人) 三班原有人数列式为 168 ÷ 4-3+6=45 (人)。

(10)植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。
解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。
解题规律:沿线段植树
棵树=段数+1 棵树=总路程÷株距+1
株距=总路程÷(棵树-1) 总路程=株距×(棵树-1)
沿周长植树
棵树=总路程÷株距
株距=总路程÷棵树
总路程=株距×棵树
例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。
分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50 ×( 301-1 )÷( 201-1 ) =75 (米)

(11 )盈亏问题:是在等分除法的基础上发展起来的。 他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。
解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。
解题规律:总差额÷每人差额=人数
总差额的求法可以分为以下四种情况:
第一次多余,第二次不足,总差额=多余+ 不足
第一次正好,第二次多余或不足 ,总差额=多余或不足
第一次多余,第二次也多余,总差额=大多余-小多余
第一次不足,第二次也不足, 总差额= 大不足-小不足
例 参加美术小组的同学,每个人分的相同的支数的色笔,如果小组 10 人,则多 25 支,如果小组有 12 人,色笔多余 5 支。求每人 分得几支?共有多少支色铅笔?
分析:每个同学分到的色笔相等。这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 25-5 ) =20 支 , 2 个人多出 20 支,一个人分得 10 支。列式为( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。

(12)年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。
解题关键:年龄问题与和差、和倍、 差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。
例 父亲 48 岁,儿子 21 岁。问几年前父亲的年龄是儿子的 4 倍?
分析:父子的年龄差为 48-21=27 (岁)。由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是( 4-1 )倍。这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍。列式为: 21( 48-21 )÷( 4-1 ) =12 (年)

(13)鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题
解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。
解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数
兔子只数=(总腿数-2×总头数)÷2
如果假设全是兔子,可以有下面的式子:
鸡的只数=(4×总头数-总腿数)÷2
兔的头数=总头数-鸡的只数
例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?
兔子只数 ( 170-2 × 50 )÷ 2 =35 (只)
鸡的只数 50-35=15 (只)

阅读全文

与小学生数学题目类型有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:736
乙酸乙酯化学式怎么算 浏览:1400
沈阳初中的数学是什么版本的 浏览:1346
华为手机家人共享如何查看地理位置 浏览:1038
一氧化碳还原氧化铝化学方程式怎么配平 浏览:880
数学c什么意思是什么意思是什么 浏览:1404
中考初中地理如何补 浏览:1294
360浏览器历史在哪里下载迅雷下载 浏览:697
数学奥数卡怎么办 浏览:1383
如何回答地理是什么 浏览:1018
win7如何删除电脑文件浏览历史 浏览:1050
大学物理实验干什么用的到 浏览:1480
二年级上册数学框框怎么填 浏览:1695
西安瑞禧生物科技有限公司怎么样 浏览:958
武大的分析化学怎么样 浏览:1243
ige电化学发光偏高怎么办 浏览:1333
学而思初中英语和语文怎么样 浏览:1646
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1481
数学中的棱的意思是什么 浏览:1053