A. 最早的算数名着是哪国的的作者是谁
我国最早的数学着作是《算数书》
数学与天文历法、中医药学、农学是中国古代最为发达的4门基础学科。可是,直到上世纪80年代初期,西汉张苍、耿寿昌在先秦“九数”的基础上编定的《九章算术》,还一直被公认为中国最早的数学着作。人们常常为社会制度急剧变革,生产力蓬勃发展,学术十分繁荣的春秋战国时期没有一部数学着作传世感到迷惑不解,也感到遗憾。但在1984年初,情况发生了变化。在湖北江陵张家山一座汉墓中出土了一批数学竹简,约有200余支完好,韦编虽已烂绝,编痕却犹存。其中一支背面有“算数书”三字,学术界因此将其定名为《算数书》。2000年《文物》杂志第9期发表了竹简《算数书》的释文。其中能够识别的有70条标题,71条相当抽象的公式,近百道数学问题及其解法。文物界认为,《算数书》的绝大多数内容和题目产生于秦或先秦,因此,《算数书》取代了《九章算术》成为目前所知道的中国传统数学最早的着作。
众所周知,《九章算术》是中国和东方古代数学的代表作。其中的分数四则运算、比例和比例分配算法、盈不足算法、解勾股形的方法和勾股数组公式、多面体体积公式、开平方和开立方的方法、线性方程组解法,以及正负数加减法则等等成就居于当时世界的领先地位,有的超前其他文化传统几百年甚至上千年。《九章算术》的成书,标志着世界数学的重心从古希腊转移到了中国,从此,中国数学在世界数坛领先1500年左右。研究表明,《九章算术》的主要方法和成就在先秦就产生了,《算数书》的出土为此提供了佐证。
B. 数学原本的作者是谁
公元前4世纪,古希腊数学家欧几里得写过一部《几何原本》,共有13卷,它成为不朽的经典着作流传至今。1939年,书架上突然出现了《数学原本》(第一卷)。好大的口气!作者是谁?署名是从未听说过的布尔巴基。这部书从那时起,到1973年,已出到第35卷,至今还没有写完。它是目前最巨大的数学专着。
布尔巴基是一个集体的笔名。本世纪20年代末,法国巴黎大学有几名大学生,立志要把迄今为止的全部数学,用最新的观点,重新加以整理。这几个初出茅庐的青年人,准备用3年的时间,写出一部《数学原本》,建立起自己的体系。这当然是过高的奢望,结果他们写了40年,至今还没有完成,但是布尔巴基学派却在这一过程中形成了。他们在数学界独树一帜,把全部数学看作按不同结构进行演绎的体系,因而以结构主义的思想蜚声国际,赢得了数学界的赞扬。布尔巴基学派甚至已经影响到中学教科书,我国近几年翻译的英、美、日本中学教材里,都有它的影子。
布尔巴基学派最初的成员有狄多涅和威尔等人,他们开始写《数学原本》时只是20来岁的青年,现在已经70开外,成为国际着名的数学教授了。
《数学原本》是一部有崭新体系的数学专着,而并非东拼西凑的数学网络全书,它以吸收最新数学成果并加以剖析而受到重视。近几年,《数学原本》的前几卷已重新修订,每卷又补充了近三分之一的新材料。这部巨着是用法文写的,现在已有英、俄、日等国文字的译本。翻译《数学原本》是一个巨大的工程,翻译成日文时,还曾专门成立了一个委员会。
C. 《数学在哪里》:糊涂的小法官的数学知识是什么
在一个数学王国里面居住着各种各样的数字和符号,比如有1、2、3,有《、》、=,还有+、-、×、÷这些居民。我是这个王国里的法官。
今天开庭,我要审两个案子。第一个案子是:两个数字比大小。他们为此争得不可开交。我一喊开庭,3.1和3.1000一瘸一拐地上来了。在数学王国有这样一条法令:凡上学的数字,宿舍的大小和数字的大小有着直接关联。他们俩总觉的自己大,可老师分给他们一样大的宿舍,于是他俩就为此打了几架。3.1000着急地问我:“法官,我们俩谁大呀?”3.1也紧随其后问我:“是啊,我们俩到底谁大呢?”我一敲法官锤,说:“你们俩其实一样大。因为小数点的末尾是0,后面没有1-9的话,数的大小是不变的。”“奥,原来是这样!”3.1和3.1000异口同声地说,于是,他们俩和好了。
第二个案子是两个角要比大小。上来两个角,一个大腹便便,一个骨瘦如柴。瘦角细声细气地问我:“我们俩,谁的角度大呀?”我用量角器测量了一下,发现两个都是直角,便说:“你们俩一样大。” “什么?”胖角瓮声瓮气地说:“这可能吗?你看我这两个边多么长,我身材这么胖!能跟那个细竹竿比吗?”,我淡定地回答:“角的大小与边长无关,只与角的角度有关!”“是这样啊!”两个角不约而同的说。听完后,听审的数字们围着我跳起舞,突然,我晕倒了。
啊!原来只有个梦!我以后要更加努力地学好数学,把案子审得更加公平、公正、公开。
D. 数学在哪里四年级下册数学好玩移火柴棒
数学在哪里〈小学四年级下册》是2018年2月电子工业出版社出版的图书,作者,唐彩斌,彭翁成,书名,数学在哪里(小学四年级下册〉,主要用于小学生的数学阅读,配合学生的所学内容,辅以,数学游戏,数学智慧,数学美学,数学趣题,数学故事等!
E. 数学奇遇记的作者叫什么,是哪国的
数学奇遇记的作者叫:宋道树,来自韩国。
《数学奇遇记》为了培养孩子的奥数思维,用创造力解决问题,本套书把数学细分为多个领域,向孩子们一一阐释;书中配套练习题,可以让孩子在学习了书中的解题技巧后,马上动笔实践,加深印象。不小心闯入另一个平行世界的少年哆哆,来到了充满挑战和冒险的数学岛。在寻找回到原来世界的方法时,哆哆遇到了声名赫赫的“数学神偷”——阿鲁鲁和修米,并和他们成为了很要好的朋友。阿鲁鲁误偷了撒比特拉玛将军的水晶骷髅头骨,头骨却又落入了骷髅教主扎昆这个黑魔法师的手里,为了夺回水晶骷髅头骨,并且阻止扎昆想要毁灭地球的邪恶行为,哆哆、阿鲁鲁义无反顾地开始了一场正义之战。
F. 为什么我喜欢《数学在哪里》这本书
思路:写出自己喜欢这本书的原因,举例自己生活中用到数学的例子,体现数学的重要性。
范文:
我喜欢《数学在哪里》这本书,有两个原因:
第一,它能让人们感受到生活中处处存在着数学。
第二,它能把这些数学变成一个个有趣的小故事。
我希望一些枯燥的数学书,都能有些像这样有趣的小故事,这样一些不喜欢数学的同学就会爱上数学。
我们的生活主要是有由语文和数学组成的,在生活中经常会遇见语文与数学,并且用到的地方特别多。
比如,家里书架上的书,书的数量,就是用数学的数数法才知道书的数量。
有一次,我算错了时间和路程。妈妈说:“假如你去坐火车,你坐的火车九点就要开,可是,你算错了时间,现在八点,你把半个小时当成一个小时,然后你就睡了一个小时,当你到火车站的时候,发现火车早就开走了。如果你不计算好时间,就是耽误了你的行程。”
所以说数学在生活中特别重要。
G. 数学是什么的作者简介
胡作玄,1936年生,1957年北京大学毕业,1964年调至中国科学院数学研究所,1980年转至中国科学院系统科学研究所,现任研究员。主要研究方向为数学,科学史,思想史。着有《20世纪数学思想》(1999)、《近代数学史》(2006)、《大有可为的数学》(2006)、《影响世界历史的100名着排行榜》(2004、2005)等。译着有《罗素自传》(2002)、《化学简史》(1979)、《数学概观》(2001)等,另有各方面论文近百篇。
H. 数学的来历(100字)
“数学”的由来
古希腊人在数学中引进了名称,概念和自我思考,他们很早就开始猜测数学是如何产生的。虽然他们的猜测仅是匆匆记下,但他们几乎先占有了猜想这一思考领域。古希腊人随意记下的东西在19世纪变成了大堆文章,而在20世纪却变成了令人讨厌的陈辞滥调。 在现存的资料中,希罗多德(Herodotus,公元前484--425年)是第一个开始猜想的人。他只谈论了几何学,他对一般的数学概念也许不熟悉,但对土地测量的准确意思很敏感。作为一个人类学家和一个社会历史学家,希罗多德指出,古希腊的几何来自古埃及,在古埃及,由于一年一度的洪水淹没土地,为了租税的目的,人们经常需要重新丈量土地;他还说:希腊人从巴比伦人那里学会了日晷仪的使用,以及将一天分成12个时辰。希罗多德的这一发现,受到了肯定和赞扬。认为普通几何学有一个辉煌开端的推测是肤浅的。
柏拉图关心数学的各个方面,在他那充满奇妙幻想的神话故事《费德洛斯篇》中,他说:
故事发生在古埃及的洛克拉丁(区域),在那里住着一位老神仙,他的名字叫赛斯(Theuth),对于赛斯来说,朱鹭是神鸟,他在朱鹭的帮助下发明了数,计算、几何学和天文学,还有棋类游戏等。
柏拉图常常充满了奇怪的幻想,原因是他不知道自己是否正亚里士多德最后终于用完全概念化的语言谈论数学了,即谈论统一的、有着自己发展目的的数学。在他的《形而上学》(Meta-physics)第1卷第1章中,亚里士多德说:数学科学或数学艺术源于古埃及,因为在古埃及有一批祭司有空闲自觉地致力于数学研究。亚里士多德所说的是否是事实还值得怀疑,但这并不影响亚里士多德聪慧和敏锐的观察力。在亚里士多德的书中,提到古埃及仅仅只是为了解决关于以下问题的争论:1.存在为知识服务的知识,纯数学就是一个最佳的例子:2.知识的发展不是由于消费者购物和奢华的需要而产生的。亚里士多德这种“天真”的观点也许会遭到反对;但却驳不倒它,因为没有更令人信服的观点.
就整体来说,古希腊人企图创造两种“科学”的方法论,一种是实体论,而另一种是他们的数学。亚里士多德的逻辑方法大约是介于二者之间的,而亚里士多德自己认为,在一般的意义上讲他的方法无论如何只能是一种辅助方法。古希腊的实体论带有明显的巴门尼德的“存在”特征,也受到赫拉克利特“理性”的轻微影响,实体论的特征仅在以后的斯多葛派和其它希腊作品的翻译中才表现出来。数学作为一种有效的方法论远远地超越了实体论,但不知什么原因,数学的名字本身并不如“存在”和“理性”那样响亮和受到肯定。然而,数学名称的产生和出现,却反映了古希腊人某些富于创造的特性。下面我们将说明数学这一名词的来源。
“数学”一词是来自希腊语,它意味着某种‘已学会或被理解的东西’或“已获得的知识”,甚至意味着“可获的东西”, “可学会的东西”,即“通过学习可获得的知识”,数学名称的这些意思似乎和梵文中的同根词意思相同。甚至伟大的辞典编辑人利特雷(E.Littre 也是当时杰出的古典学者),在他编辑的法语字典(1877年)中也收入了“数学”一词。牛津英语字典没有参照梵文。公元10世纪的拜占庭希腊字典“Suidas”中,引出了“物理学”、“几何学”和“算术”的词条,但没有直接列出“数学”—词。
“数学”一词从表示一般的知识到专门表示数学专业,经历一个较长的过程,仅在亚里士多德时代,而不是在柏拉图时代,这一过程才完成。数学名称的专有化不仅在于其意义深远,而在于当时古希腊只有“诗歌”一词的专有化才能与数学名称的专有化相媲美。“诗歌”原来的意思是“已经制造或完成的某些东西”,“诗歌”一词的专有化在柏拉图时代就完成了。而不知是什么原因辞典编辑或涉及名词专有化的知识问题从来没有提到诗歌,也没有提到诗歌与数学名称专有化之间奇特的相似性。但数学名称的专有化确实受到人们的注意。
首先,亚里士多德提出, “数学”一词的专门化使用是源于毕达哥拉斯的想法,但没有任何资料表明对于起源于爱奥尼亚的自然哲学有类似的思考。其次在爱奥尼亚人中,只有泰勒斯(公元前640?--546年)在“纯”数学方面的成就是可信的,因为除了第欧根尼·拉尔修(Diogenes Laertius)简短提到外,这一可信性还有一个较迟的而直接的数学来源,即来源于普罗克洛斯(Proclus)对欧几里得的评注:但这一可信性不是来源于亚里士多德,尽管他知道泰勒斯是一个“自然哲学家”;也不是来源于早期的希罗多德,尽管他知道塞利斯是一个政治、军事战术方面的“爱好者”,甚至还能预报日蚀。以上这些可能有助于解释为什么在柏拉图的体系中,几乎没有爱奥尼亚的成份。赫拉克利特(公元前500--?年)有一段名言:“万物都在运动中,物无常往”, “人们不可能两次落进同一条河里”。这段名言使柏拉图迷惑了,但赫拉克赖脱却没受到柏拉图给予巴门尼德那样的尊敬。巴门尼德的实体论,从方法论的角度讲,比起赫拉克赖脱的变化论,更是毕达哥拉斯数学的强有力的竞争对手。
对于毕达哥拉斯学派来说,数学是一种“生活的方式”。事实上,从公元2世纪的拉丁作家格利乌斯(Gellius)和公元3世纪的希腊哲学家波菲利(Porphyry)以及公元4世纪的希腊哲学家扬布利科斯(Iamblichus)的某些证词中看出,似乎毕达哥拉斯学派对于成年人有一个“一般的学位课程”,其中有正式登记者和临时登记者。临时成员称为“旁听者”,正式成员称为“数学家”。
这里“数学家”仅仅表示一类成员,而并不是他们精通数学。毕达哥拉斯学派的精神经久不衰。对于那些被阿基米德神奇的发明所深深吸引的人来说,阿基米德是唯一的独特的数学家,从理论的地位讲,牛顿是一个数学家,尽管他也是半个物理学家,一般公众和新闻记者宁愿把爱因斯坦看作数学家,尽管他完全是物理学家。当罗吉尔·培根(Roger Bacon,1214--1292年)通过提倡接近科学的“实体论”,向他所在世纪提出挑战时,他正将科学放进了一个数学的大框架,尽管他在数学上的造诣是有限的,当笛卡儿(Descartes,1596--1650年)还很年轻时就决心有所创新,于是他确定了“数学万能论”的名称和概念。然后莱布尼茨引用了非常类似的概念,并将其变成了以后产生的“符号”逻辑的基础,而20世纪的“符号”逻辑变成了热门的数理逻辑。
在18世纪,数学史的先驱作家蒙托克莱(Montucla)说,他已听说了关于古希腊人首先称数学为“一般知识”,这一事实有两种解释:一种解释是,数学本身优于其它知识领域;而另一种解释是,作为一般知识性的学科,数学在修辞学,辩证法,语法和伦理学等等之前就结构完整了。蒙托克莱接受了第二种解释。他不同意第一种解释,因为在普罗克洛斯关于欧几里得的评注中,或在任何古代资料中,都没有发现适合这种解释的确证。然而19世纪的语源学家却倾向于第一种解释,而20世纪的古典学者却又偏向第二种解释。但我们发现这两种解释并不矛盾,即很早就有了数学且数学的优越性是无与伦比的。
查看全部6个回答
小学二年级语文辅导 提分辅导精品课程
关注数学的人也在看
小学二年级语文辅导 武汉尖锋教育,总结历年考试考纲...
m.whjf.com广告
数学高中解题技巧 模考不如意..
数学高中解题技巧 ,高考如何快速提高100分,清北学霸的独门绝技,千万不要..
xkb.gywnzjy.cn广告
相关问题全部
关于数学的来历100字
数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics或Maths),其英语源自于古希腊语的μθημα(máthēma),有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。 还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦被用来指数学。 数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。 (8)数学在哪里的作者是谁扩展阅读 基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态。 在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”)。 直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分。 现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构、序结构、拓扑结构(邻域,极限,连通性,维数……)。 参考资料来源:网络-数学
2 浏览1001 2019-09-03
数学的来历100字
数学,其有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的。
在中国古代,数学叫作算术,又称算学,最后才改为数学。中国古代的算术是六艺之一(六艺中称为“数”)。
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明。但也要充分肯定他们对数学所做出的贡献。
8 浏览129
数学的来历。(100字到200字左右)
我国数学在世界数学发展史上,有它卓越的贡献。早在远古时代,人们就用绳结表示事物的多少,在彩陶中绘有大量的直线、三角、圆、方、菱形、五边形、六边形等对称图案,在房屋遗址的基地上,亦发现几何图形,表明远古的人们在一定程度上已经具有数和形的概念。
在新石器时期的彩陶钵上,有多种刻画符号,其中丨、、、?、 等,很可能是我国最早的记数符号。产生文字之后,在殷商的甲骨文中出现了记数的专用文字和十进制记数法,并且运用规和矩作为简单的绘图和测量工具。《前汉书?律历志》记载了用竹棍表示数和计算的方法,称为算筹和筹算。在春秋早期乘法口诀被称为“九九”歌,已经成为很普通的知识。
春秋战国时期,学术繁荣,产生了相当精彩和可贵的数学思想;公元前6世纪,已经有了关于简单体积和比例分配问题的算法,在《考工记》中记载了分数和角度的资料;到秦始皇时,统一了度量衡,并且基本上采用了十进制的度量单位,在《墨经》中提出了几何名词的定义和几何命题等。《杜忠算术》和《许商算术》是最早的数学专着,但这两部书都失传了。至今仍保留的古代数学专着是《算数书》,全书共有60多个小标题、90多个题目,书中内容涉及了整数和分数的四则运算、比例问题、面积和体积问题等、并且含有“合分”、“少广”等数学思想。
大约公元前1世纪完成了《周髀算经》(书中大部分内容于公元前7到6世纪完成),书中记述了矩的用途、勾股定理及其在测量上的应用,相似直角三角形对应边成比例的定理、开平方问题、等差级数问题,应用古“四分历”计算相当复杂的分数运算等,此书为重要的宝贵文献。
古代数学的着名着作是《九章算术》,大约成书于公元1世纪东汉初年,全书列举了246个数学问题及解决问题的方法。共有九章:第一章“方田”介绍土地面积的计算、含有正方形、矩形、三角形、梯形、圆、环等面积公式,弓形面积和球形表面积的近似公式,还有分数四则运算法则、约分、通分、求最大公约数等方法;第二章“粟米”介绍了各种粮食折算的比例问题,及解比例的方法,称为“今有术”;第三章“衰(Cuǐ)分”介绍了按等级分配物资或按一定标准摊派税收的比例分配问题、等差数列和等比数列问题等;第四章“少广”介绍了已知正方形面积或正方体体积,求边长或棱长的开平方或开立方的方法,已知球的体积求直径的问题等;第五章“商功”介绍了立体体积计算,包括长方体、棱柱、棱锥、棱台、圆柱、圆锥、圆台、楔形体等体积的计算公式;第六章“均输”介绍了计算按人口多少、物价高低、路程远近等条件,合理摊派税收、民工的正比、反比、复比例、等差级数等问题;第七章“盈不足”介绍了盈亏类问题的算法;第八章“方程”介绍了一次联立方程问题,引入了负数的概念,及正负数的加减法则;第九章“勾股”介绍了勾股定理的应用和简单的测量问题,其后,历史上着名数学家刘徽、祖冲之、李淳风、贾宪等,都曾经深入研究和注释过《九章算术》并且提出许多新的概念和新的方法。在诸如勾股定理的证明、重差术、割圆术、圆周率近似值、球的体积公式、二次和三次方程的解法。同余式和不定方程的解法等方面做出了重要的新贡献。
我国古代数学专着有《勾股圆方图注》、《九章算术注》、《孙子算经》、《五经算术》、《缀术》等。特别应该指出的是,刘徽在《九章算术注》中对《九章算术》的大部分数学方法作了严密的论证,对于一些数学概念提出了明确的解释,为中国数学发展奠定了坚实的理论基础。祖冲之在《缀术》中得出了比刘徽所提出的值更精密的圆周率,成为举世公认的重大成就。贾宪在《黄帝九章算法细草》中提出的“开方作法本源”图和增乘开方法,以及《孙子算经》中的“孙子问题”,《张邱建算经》中的“百鸡问题”、珠算盘和珠算术等等,均在世界数学发展史上有深远影响。
125 浏览5915 2017-10-14
数学符号的由来100字
“+”号是由拉丁文“et”(“和”的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文“plu”(“加”的意思)的第一个字母表示加,草为“μ”最后都变成了“+”号。“-”号是从拉丁文“minus”(“减”的意思)演变来的,一开始简写为m,再因快速书写而简化为“-”了。
也有人说,卖酒的商人用“-”表示酒桶里的酒卖了多少。以后,当把新酒灌入大桶的时候,就在“-”上加一竖,意思是把原线条勾销,这样就成了个“+”号。
到了十五世纪,德国数学家魏德美正式确定:“+”用作加号,“-”用作减号。
乘号曾经用过十几种,现代数学通用两种。一个是“×”,最早是英国数学家奥屈特1631年提出的;一个是“·”,最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:“×”号像拉丁字母“X”,可能引起混淆而加以反对,并赞成用“·”号(事实上点乘在某些情况下亦易与小数点相混淆)。后来他还提出用“∩“表示相乘。这个符号在现代已应用到集合论中了。
到了十八世纪,美国数学家欧德莱确定,把“×”作为乘号。他认为“×”是“+”的旋转变形,是另一种表示增加的符号。
“÷”最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用“:”表示除或比,另外有人用“-”(除线)表示除。后来瑞士数学家拉哈在他所着的《代数学》里,才根据群众创造,正式将“÷”作为除号。
平方根号曾经用拉丁文“Radix”(根)的首尾两个字母合并起来表示,十七世纪初叶,法国数学家笛卡儿在他的《几何学》中,第一次用“√”表示根号。“√”是由拉丁字线“r”的变形,“ ̄”是括线。
15 浏览296 2017-04-27
数学的来历 50字
数学”一词是来自希腊语,字面意思有学习、科学之意。它起源于人类早期的生产活动,其基本概念的精炼早在古埃及、美索不达米亚及古印度就已经出现。 人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。 基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态。 代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支。 (8)数学在哪里的作者是谁扩展阅读: 许多如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构.数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。 此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构.因此,我们可以学习群、环、域和其他的抽象系统。 把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域.由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗瓦理论解决了,它涉及到域论和群论。 代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究.这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性.组合数学研究列举满足给定结构的数对象的方法。 参考资料:网络——数学
89 浏览5984 2018-11-12
76条评论
求神不如拜我__
21
2014-02-16 20:33
我勒个去.......这也算是100字?
回复Ta
相爱的人走了
14
2014-02-09 16:16
我勒个去.......这也算是100字?
回复Ta
求神不如拜我__
9
2014-02-13 16:21
非常谢谢,但是不要太长了,100-150字就够了。
回复Ta
热心网友:给你来一万字的
热心网友:不用谢数数学的来历(100字)
数学前面的话
我来答
j801126
LV.8 2017-11-25
“数学”的由来
古希腊人在数学中引进了名称,概念和自我思考,他们很早就开始猜测数学是如何产生的。虽然他们的猜测仅是匆匆记下,但他们几乎先占有了猜想这一思考领域。古希腊人随意记下的东西在19世纪变成了大堆文章,而在20世纪却变成了令人讨厌的陈辞滥调。 在现存的资料中,希罗多德(Herodotus,公元前484--425年)是第一个开始猜想的人。他只谈论了几何学,他对一般的数学概念也许不熟悉,但对土地测量的准确意思很敏感。作为一个人类学家和一个社会历史学家,希罗多德指出,古希腊的几何来自古埃及,在古埃及,由于一年一度的洪水淹没土地,为了租税的目的,人们经常需要重新丈量土地;他还说:希腊人从巴比伦人那里学会了日晷仪的使用,以及将一天分成12个时辰。希罗多德的这一发现,受到了肯定和赞扬。认为普通几何学有一个辉煌开端的推测是肤浅的。
柏拉图关心数学的各个方面,在他那充满奇妙幻想的神话故事《费德洛斯篇》中,他说:
故事发生在古埃及的洛克拉丁(区域),在那里住着一位老神仙,他的名字叫赛斯(Theuth),对于赛斯来说,朱鹭是神鸟,他在朱鹭的帮助下发明了数,计算、几何学和天文学,还有棋类游戏等。
柏拉图常常充满了奇怪的幻想,原因是他不知道自己是否正亚里士多德最后终于用完全概念化的语言谈论数学了,即谈论统一的、有着自己发展目的的数学。在他的《形而上学》(Meta-physics)第1卷第1章中,亚里士多德说:数学科学或数学艺术源于古埃及,因为在古埃及有一批祭司有空闲自觉地致力于数学研究。亚里士多德所说的是否是事实还值得怀疑,但这并不影响亚里士多德聪慧和敏锐的观察力。在亚里士多德的书中,提到古埃及仅仅只是为了解决关于以下问题的争论:1.存在为知识服务的知识,纯数学就是一个最佳的例子:2.知识的发展不是由于消费者购物和奢华的需要而产生的。亚里士多德这种“天真”的观点也许会遭到反对;但却驳不倒它,因为没有更令人信服的观点.
就整体来说,古希腊人企图创造两种“科学”的方法论,一种是实体论,而另一种是他们的数学。亚里士多德的逻辑方法大约是介于二者之间的,而亚里士多德自己认为,在一般的意义上讲他的方法无论如何只能是一种辅助方法。古希腊的实体论带有明显的巴门尼德的“存在”特征,也受到赫拉克利特“理性”的轻微影响,实体论的特征仅在以后的斯多葛派和其它希腊作品的翻译中才表现出来。数学作为一种有效的方法论远远地超越了实体论,但不知什么原因,数学的名字本身并不如“存在”和“理性”那样响亮和受到肯定。然而,数学名称的产生和出现,却反映了古希腊人某些富于创造的特性。下面我们将说明数学这一名词的来源。
“数学”一词是来自希腊语,它意味着某种‘已学会或被理解的东西’或“已获得的知识”,甚至意味着“可获的东西”, “可学会的东西”,即“通过学习可获得的知识”,数学名称的这些意思似乎和梵文中的同根词意思相同。甚至伟大的辞典编辑人利特雷(E.Littre 也是当时杰出的古典学者),在他编辑的法语字典(1877年)中也收入了“数学”一词。牛津英语字典没有参照梵文。公元10世纪的拜占庭希腊字典“Suidas”中,引出了“物理学”、“几何学”和“算术”的词条,但没有直接列出“数学”—词。
“数学”一词从表示一般的知识到专门表示数学专业,经历一个较长的过程,仅在亚里士多德时代,而不是在柏拉图时代,这一过程才完成。数学名称的专有化不仅在于其意义深远,而在于当时古希腊只有“诗歌”一词的专有化才能与数学名称的专有化相媲美。“诗歌”原来的意思是“已经制造或完成的某些东西”,“诗歌”一词的专有化在柏拉图时代就完成了。而不知是什么原因辞典编辑或涉及名词专有化的知识问题从来没有提到诗歌,也没有提到诗歌与数学名称专有化之间奇特的相似性。但数学名称的专有化确实受到人们的注意。
首先,亚里士多德提出, “数学”一词的专门化使用是源于毕达哥拉斯的想法,但没有任何资料表明对于起源于爱奥尼亚的自然哲学有类似的思考。其次在爱奥尼亚人中,只有泰勒斯(公元前640?--546年)在“纯”数学方面的成就是可信的,因为除了第欧根尼·拉尔修(Diogenes Laertius)简短提到外,这一可信性还有一个较迟的而直接的数学来源,即来源于普罗克洛斯(Proclus)对欧几里得的评注:但这一可信性不是来源于亚里士多德,尽管他知道泰勒斯是一个“自然哲学家”;也不是来源于早期的希罗多德,尽管他知道塞利斯是一个政治、军事战术方面的“爱好者”,甚至还能预报日蚀。以上这些可能有助于解释为什么在柏拉图的体系中,几乎没有爱奥尼亚的成份。赫拉克利特(公元前500--?年)有一段名言:“万物都在运动中,物无常往”, “人们不可能两次落进同一条河里”。这段名言使柏拉图迷惑了,但赫拉克赖脱却没受到柏拉图给予巴门尼德那样的尊敬。巴门尼德的实体论,从方法论的角度讲,比起赫拉克赖脱的变化论,更是毕达哥拉斯数学的强有力的竞争对手。
对于毕达哥拉斯学派来说,数学是一种“生活的方式”。事实上,从公元2世纪的拉丁作家格利乌斯(Gellius)和公元3世纪的希腊哲学家波菲利(Porphyry)以及公元4世纪的希腊哲学家扬布利科斯(Iamblichus)的某些证词中看出,似乎毕达哥拉斯学派对于成年人有一个“一般的学位课程”,其中有正式登记者和临时登记者。临时成员称为“旁听者”,正式成员称为“数学家”。
这里“数学家”仅仅表示一类成员,而并不是他们精通数学。毕达哥拉斯学派的精神经久不衰。对于那些被阿基米德神奇的发明所深深吸引的人来说,阿基米德是唯一的独特的数学家,从理论的地位讲,牛顿是一个数学家,尽管他也是半个物理学家,一般公众和新闻记者宁愿把爱因斯坦看作数学家,尽管他完全是物理学家。当罗吉尔·培根(Roger Bacon,1214--1292年)通过提倡接近科学的“实体论”,向他所在世纪提出挑战时,他正将科学放进了一个数学的大框架,尽管他在数学上的造诣是有限的,当笛卡儿(Descartes,1596--1650年)还很年轻时就决心有所创新,于是他确定了“数学万能论”的名称和概念。然后莱布尼茨引用了非常类似的概念,并将其变成了以后产生的“符号”逻辑的基础,而20世纪的“符号”逻辑变成了热门的数理逻辑。
在18世纪,数学史的先驱作家蒙托克莱(Montucla)说,他已听说了关于古希腊人首先称数
I. 《数学在哪里》读后感400字
语言就仿佛一座桥梁,教育科学就是通过这座桥梁变成教师的教学艺术和教学能力的。”“教师的语言,是感化学生心灵不可取代的手段。教育的艺术,首先是灵犀相通的说话艺术。”教师的魅力很大程度上是从其说话艺术上体现出来的。作为一名教师,必须认真地揣摩自己的语言,在实践中坚持不懈地训练自己的语言。语言有有声和无声之分,我要说的是有声语言,即教师将其教育思想和教育理念从无声化为有声的语言进行施教的魅力。
第一,数学教师的语言要准。
教师的语言要科学、准确。这样的语言才会具有感染力和吸引力。例如,“平年2月只有28天,闰年2月有29天”这句话如果说成“平年2月有28天,闰年2月有29天”就不科学了。还有诸如“26这个数字”这样的话也不科学,因为在阿拉伯数字中只有0——9这10个数字,26是一个数而不是一个数字。数学是一门科学性很强的学科,这就要求教师的语言不能犯科学性的错误。
第二,数学教师的语言要精。
能用一句话说的,就不用两句话去说。必要时,当学生有积极主动地学习行为和发言欲望时,你甚至可以不说话,要学会“不为”,先做一个旁观者,在旁边观察,伺机引导。“此时无声胜有声”,教育过程中应该多留给学生一些宁静与沉思的时间。一个好老师,不应该是一种无所不知,无所不能,口若悬河,锋芒毕露的形象,而应该是一个懂得适当地“藏巧”,会激发学生潜能的智者,应该学会等待。教育是一门艺术,在适当的时候教师可以表现得低调一点,弱势一点,因为这样做可以为学生提供更多的自我展示的机会,提供更多的独立思考的机会,提供更多的涵泳的时间。
第三,数学教师的语言要传情。
教师的语言应该象催化剂一样,深入学生的性格特征和情感、知识基础之中,与其汇合,发生反应,从而启发学生的心智,振奋学生的神经,促其深入思考,这样的语言对学生才有吸引力,才能开启学生思维。
由于学生认知水平的差异,学生在课堂上的表现不尽相同。当学生的回答有失偏颇的时候,以往大多数老师便以“错了,请坐!”“不对!谁再来?”这些单一的语言来否定学生的回答,并期盼其他学生的正确回答。而现在在新课程理念的指导下,老师们善于运用自己巧妙、机智的语言来纠正、鼓励学生的回答,注意情绪导向,做到引而不发。
第四,数学教师的语言要激趣。
如果你的语言极具感染力,吸引力和信服力,那么就会产生润物细无声的效果。所谓亲其师信其道,你的语言亲切,饱含思想与感情,与学生的智慧和心灵进行活生生的交流,学生就会信服你,跟随你,这样就会形成良好的互动。
师生之间需要一种心犀相通的交流,需要对话。“对话”不是“对答”。“对话”的实质是师生与文本之间的、心理与社会的相互作用,是在学习过程中,师生脑海里固有的知识、经历、观念、信息与文本的碰撞,是师生对知识的理解、感悟和升华,它是一种情感上的交流与美好生命的共享,具有生成新思维、新思想的特质。对话的质量表现为:或者增长见闻,或者增强技能,或者提高认识,或者升华精神。
总之,作为教师应该树立一种信念:用一生的时间去打造自己,锤炼教育教学语言,立志成为一个讲究审美与教育艺术的教育家。让我们把文化、思想和对学生的爱与责任的理想、信念都内化为自己的东西,形成自己的独特的教育教学语言,因为这是我们教育工作者的武器、工具,是用来开启学生心灵的钥匙
J. 数学在哪里书签
在书本中。《数学在哪里(小学一年级上册)》是2016年9月电子工业出版社出版的图书,作者是唐彩斌、彭翕成,本书自带一个书签在书本里,方便阅读者找到自己阅读的位置。