A. 什么是数学书籍
就是有关数学方面的书啊,什么是数学,他本身就是一个书籍的名字。什么是数学完整的介绍了数学体系各个分支非常严谨的数学读物。
B. 什么是数学书籍
意思:数学书
拼音:[shū jí ]
书籍的意思:装订成册的着作。
详细释义:泛指一般图书。
冰心《超人》:“他略略地点一点头,便回身去收拾他的书籍。”
近义词:书本、书册
一、书本
意思:(总称):书本知识。
拼音:[shū běn ]
详细释义:装订成册的着作。
孙犁《秀露集·克明<荷灯记>序》:“在战争环境里成长起来的一些作者,我同克明都在内,得生活的教育多,受书本的教育少。”
二、书册
拼音:[ shū cè ]
意思:装订成册的书;书本。
详细释义:书籍。
鲁迅 《书信集·致许寿裳》:“《自选集》一本仍在书架上,因书册太小,不能同裹,故留下以俟后日。”
C. 《什么是数学》书籍介绍
《什么是数学》是为初学者也是为专家,既是为学生也是为教师,既是为哲学家也是为工程师而写的。它是一本世界着名的数学科普读物。书中搜集了许多经典的数学珍品,给出了数学世界的一组有趣的、深入浅出的图画,对整个数学领域中的基本概念与方法,做了精深而生动的阐述。
I·斯图尔特增写了新的一章,以新的观点阐述了数学的最新进展,叙述了四色定理和费马大定理的证明等。这些问题是在柯朗与罗宾写书的年代尚未解决,但现在已被解决了的。
本书是“对整个数学领域中的基本概念及方法的透彻清晰的阐述。”
——A·爱因斯坦
本书既是为初学者也是为专家,既是为学生也是为教师,既是为哲学家也是为工程师而写的。《什么是数学》是一本数学经典名着,它搜集了许多闪光的数学珍品,它们给出了数学世界的一组有趣的、深入浅出的图画。本书传至今日,又由I·斯图尔特增写了新的一章。此第二版以新的观点阐述了数学的最新进展,叙述了四色定理和费马大定理的证明等。这些问题是在柯朗与罗宾写书的年代尚未解决,但如今已被解决了的。
一个光辉的文献故事,《什么是数学》开启了一扇认识数学世界的窗口。
“毫无疑问,这本书将会有深远的影响,它应当人手一册,无论是专业人员抑或是愿意做科学思考的任何人。”
——纽约时报
“一本极为完美的着作。”
——数学评论
“太妙了……这本书是巨大愉快和满足感的源泉。”
——应用物理杂志
“这本书是一部艺术着作。”
——M·莫尔斯
“这是一本非常完美的着作。……被数学家们视作科学的鲜血的一切基本思路和方法,在《什么是数学》这本书中用最简单的例子使之清晰明了,已经达到令人惊讶的程度。”
本书是世界着名的数学科普读物,它搜集了许多经典的数学珍品,对整个数学领域中的基本概念与方法,做了精深而生动的阐述。无论是数学专业人士,或是愿意作数学思考者都可以阅读此书。特别对中学数学教师,大学生和高中生,都是一本极好的参考书。
D. 数学读本指的是什么
指的是课外数学阅读。数学读本是一本书,数学读本所涵盖的数学阅读不是索引教科书的阅读,也不是单一指数学的阅读能力,而是学生课外数学的阅读,或以中文阅读的形式阅读数学内容,数学课本是固定的知识,而数学读本是一个有趣的故事,它可以激发学生的思维。
阅读数学读本的好处
数学读本的优势在于它不是一种单纯的能力,而是在阅读数学材料时,表现出来的一种包括思维、想象、运算,以及分析问题、解决问题在内的综合能力。数学读本更多的是唤醒学生的阅读兴趣,引领学生通过阅读,智慧思考,在积极的思考过程中提升思维的品质。
阅读只是一种手段,其目的是通过阅读促进学生思维的发展,使学生能够在阅读的过程中以数学的眼光透过文字找到背后的数学思想,提升学生的数学素养。数学读本阅读是解决学习过程中遇到的问题的重要途径,是提高数学思考的有效手段。
数学读本的核心是促进数学思维的发展,通过课外阅读不断促进学生的思维发展,而且有助于学生个性化学习,使每个学生能通过自身的努力达到各自可能达到的水平。
E. 数学书的英文是什么
数学书的英文是:math book。
math book
英 [mæθ bʊk] 美 [mæθ bʊk]
数学书;数学课本;数学乢;数孜乢。
Take out your math book.
拿出你的数学书。
The bell sounded and Victor shot out of the room, avoiding the stares of the other kids, but had to return for his math book.
下课铃声响起,维克多避开了班里所有其他孩子的目光,像子弹一样冲出了教室,但不得不再次回到教室去取落在那里的数学书。
近义词:
mathematics
英 [ˌmæθə'mætɪks] 美 [ˌmæθə'mætɪks]
n. 数学。
Mathematics is her favorite subject.
数学是她喜欢的科目。
He has a great faculty for mathematics.
他具有很强的学数学的才能。
F. 数学读本是什么书
《数学读本》是一本涉及的数学阅读,不是指数学课本的阅读,也不是单指数学的阅读理解能力,而是指学生的课外数学阅读,或者是以语文阅读的形式呈现的关于数学内容的阅读。
可以当做休闲娱乐小品随便翻翻,有助于排遣工作疲劳、俗事烦恼;可以作为教师参考资料,有助于活跃课堂气氛,启迪学生心智。
可以作为学生课外读物,有助于开阔眼界,增长知识、锻炼逻辑思维能力。即使对于数学修养比较高的大学生,研究生甚至数学研究工作者,也会开卷有益。
《数学读本》的特点:
1、选材新颖
从选材角度来看,体现了两方面:一是往前找,结合书本知识进行“寻根”,注重讲知识的来源;二是往后看,找所学知识在生活中的应用,突出数学与生活的联系。
2、可读性强
这套书里包含了数学家的故事,数学文化介绍,数学历史故事,数学童话故事,数学笑话,数学游戏,经典趣题等符合小学生的认知发展规律。
3、感染性强
文章通俗易懂,集知识性、趣味性、文学性、娱乐性于一体,满足孩子的好奇心和求知欲。很多小故事在不知不觉中就能触动孩子的数学神经,可谓“随风潜入夜,润物细无声”。
G. 大学数学书有哪些
《微积分》(也有叫做高等数学)(上,下两本) 《线性代数》 《概率论与数理统计》 这四本书是以后考研数学要考的。其他的还有《复变函数》《 数理方程》。
微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量、向量空间(或称线性空间),线性变换和有限维的线性方程组。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。线性代数在数学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位。线性代数所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的。
《概率统计》是高等院校理工类、经管类的重要课程之一。在考研数学中的比重大约占22%左右。主要内容包括:概率论的基本概念、随机变量及其概率分布、数字特征、大数定律与中心极限定理、统计量及其概率分布、参数估计和假设检验、回归分析、方差分析、马尔科夫链等内容。
以复数作为自变量和因变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。
数学无理方程就是偏微分法方程,由于他们是对物理中很多问题模型的高度概括,如线索的振动,热传导,传输线,电磁场中的问题。通常他是和定解条件一起出现的。
H. 经典数学书籍推荐
推荐关于数学的书推荐:
1、《什么是数学》:
既是为初学者也是为专家,既是为学生也是为教师,既是为哲学家也是为工程师而写的。它是一本世界着名的数学科普读物。
2、《数学及其历史》:
是一本通过数学史来讲授数学的教材,本书的作者通过讲述某些数学论题,组织与之相关的概念、人物、思想、问题背景及发展中的故事等材料,赋予读者数学是统一的观点。
3、《数学在19世纪的发展》:
介绍了数学科学在19世纪的发展。在本卷非常详尽且有批判性地分析了大批最重要的数学家的数学思想和贡献;介绍了大批物理学业绩;详细讨论了一些最重要的数学分支的缘起前景。
4、《简明复分析》:
本书较系统地讲述了复变函数论的基本理论和方法。内容包括: 微积分、Cauchy积分定理与公式、Weierstrass级数理论、Riemann映射定理、微分几何与Picard定理、多复变数函数浅引等。
I. 请问语文和数学书是什么
语文书就是中国字比阿拉伯数字多的一本学校发的教科书。数学书就刚好反之,是阿拉伯数字比中国字多的一本学校发的教科书。