1. 小学数学教学中如何抓住重点突破难点
数学作为一门具有很强逻辑性和连续性的学科,是每个小学生都应该掌握的基础知识.小学数学重点是基础知识的掌握基和学习,学习数学的标准就是能够对该学籍范围内的题目进行正确的解答.考察公式概念是小学数学重点要掌握的知识,下面这几个学习方法带你学好数学.
(同学们开讲)
学习小学数学重点就是注重学习的方法,但是也需要学生有坚持不懈的精神.勤学多问不耻下问是学习的良好态度,他们会把你带到一个更高的层次,掌握好学习方法,你会对每一天的新知识充满兴趣.
2. 如何在初中数学教学中突破重点和难点
初中的数学知识虽然不会太过深奥,但是知识点琐碎,能够将琐碎的知识点灵活地应用到题目的解答中是初中数学教师们共同努力的目标。下面结合自己的教学经验以及数学的中考试题简要谈一下初中数学教学中知识点的把握技巧。一、把握细节,细化知识要点知识,本是琐碎之点,对于各类问题知识点的细致深化有利于培养学生敏锐、严谨的思维,无论是生活上,还是考试中都能应对较为细微的问题,老师在教学过程中要有意地将知识点细致的讲解与练习,仔细剖析其中容易忽略的问题,提醒学生们平常不仔细的做题习惯,以便于应对考试中的题目“陷阱”。数学知识中的细节要点主要表现为图形的特点,比如三角形的性质,角平分线定理的应用条件,中心对称,轴对称知识;公式的应用条件,比如二元一次方程两个根的判断;切线定理的具体应用,都是学生需要把握的细节,也是知识的要点。例如在中心对称的知识点中,学生们知道中心对称的定义是:将图形绕着某一点旋转180度,如果它能与另一个图形重合,那么就说这两个图形关于这个点中心对称。但是在做题之中更应重视旋转180度是什么概念,许多学生在做题中没有将这一知识点细化,造成答题时概念混淆,下面我们结合一道中考题进行讲解:例:下列图形中,是中心对称图形但不是轴对称图形的是()。本题中,出题者有意选取富有新意的图形来考察学生日常学习到的知识点,尤其是比较容易混淆的图形来考察学生们对旋转180度的认识,通过细节的变换来提醒学生们真正地掌握知识的每一个方面,这样才能应对每一个细节方面的问题。根据题目,B、C两个选项都是轴对称图形,所以排除两个选项。根据中心对称的定义A和D中,只有A绕180度后才能够与原图形重合,所以答案选A。通常情况下,人们会对D产生误解,认为它同样是中心对称图形,这就是没有注意到第四个图形的旋转周期为120度,并不是所有的能够旋转的图形都是中心对称图形,本题目的另类设置充分体现了对知识点的细化,深入到知识的每一个方面,让学生全面了解知识的构架。二、灵活教学方法,善于应用知识要点对于知识要点的现实应用是我们教学的终极目标,但一般的老师会认为数学这种理论性偏强的学科更适合将知识要点在课堂上言传身授比较实用,这样的教学方法无形之中会给学生们的学习造成压力与负担,而将数学知识要点与日常生活相关联,更能够使学生们感受到数学的实用价值,将知识要点应用到实际中去,可以提升学生对该知识点的印象。比如:在学习三角形相似性时,可以通过三角形相似性的特点让学生测量生活中一些距离的长度,通过实践,让学生掌握三角形相似性的判定条件,计算细节;学习概率时,可以自行抛硬币,通过统计正面与反面的次数,以此来预见所抛硬币的正反面情况,以此来验证概率论的正确性。如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB┴BC,CD┴BC,点E在BC上,并且点A,E,D在同一条直线上。若测得BE=20cm,EC=10m,CD=20m,则河的宽度AB等于()。本题即是运用三角形的一些知识点来解决生活中的实际问题。根据三角形的相似性可知△ABE与△DCE是相似三角形,所以BE:CE=AB:CD,所以能够得出AB的距离是40m,即河宽为40m。这样的实际问题有意在引导同学们将所学数学知识点应用到现实生活之中,使枯燥的数字与图形变得实用起来,而教师在教学过程中就要适应这一趋势,通过应用知识点的方式将数学知识变得能够解决实际问题,同学们能够意识到所学知识的重要性,无论是对数学的学习热情还是今后的生活工作都能将数学变得活起来。三、提高效率,归纳总结知识要点对数学知识点的归纳与整理是学习数学的关键环节,学生一定要把基础知识夯实,这样才能够在此基础上变换各种学习方法。老师要做的是要提高自己的教学效率,注重知识点的归纳和总结,让学生全面掌握知识点,在做题之中能灵活运用。比如,几何图形的证明与运算中有关于边与角的关系有许多琐碎的知识点;关于平行四边形类题型的解答步骤;辅助线的添加;三角形中心的应用;中位线定理的应用等等,这些知识点,稍不注意就容易忘掉或混淆,老师应帮助学生,以具体的题目为依托,整理出各类问题的知识要要点。四、结语初中数学教学在新课程标准改革的背景下变得更加富有创造性,更能吸引学生们认真学习,对于数学知识要点的着重把握还需各位一线老师的不懈钻研与分享。本文只是针对初中数学教学知识点的把握进行简要阐述,更深的学问还有待同仁们的共同努力。
3. 小数数学如何突破教学重难点
突出重点、突破难点是小学数学教学成功的关键。往往我们为如何解决重难点而绞尽脑汁,然而效果并不理想。那么如何在课堂教学中突出重点、突破难点是每位教师必须研究解决的问题。下面谈谈自己在教学中的点滴体会。
一、课前预设,找准重难点
小学数学课程标准强调要在教学中充分调动学生学习的积极性和主动性,突出主体学习地位。这就要求我们在平时每天的预设中,要结合学生的认知规律,认真研究教材,找准各章节的重难点。例如分数乘除法应用题是分数应用题教学的重点和难点。教材中引入了列方程来解决分数除法应用题,将除法归结于乘法。所以这一章节的重点和难点就集中在分数乘法应用题的教学之中,而分数乘法应用题关键就是教学好“一个数乘分数的意义”,只有这样才利于分数应用题的教学。
二、课堂教学,紧抓重难点
1.在自主探究中,突破重难点
随着年龄的增长,到小学高年级时,学生已经积累了一定的数学素养,阅读能力和自学能力都有所发展。当学生初步具备分析问题、解决问题的能力时,教师应当放手让学生自主学习。在预习过程,学生对一些简单的问题自己就会解决,无需在课堂上进行集中交流展示,如此不仅节约时间,又提高了学生的自学能力。而对于有疑惑的地方,记录下来,以便于课堂交流解决。例如在《小数的读法和写法》一课中,重难点是正确的读写小数、理解小数的数位顺序表。在教学本课时,我先让学生独立学习课本52—54页的内容。然后完成自学记录卡。
(1)0.20读作( )。
12.387读作( )。
(2)一点四写作( )。
零点零九写作( )。
(3)小数点的左边是( )部分,小数点右边是( )部分。12.387中的8在( )位上,表示( )个( )。2在( )位上,表示( )个( )。
在自学过程中学生已经初步的掌握了小数的读法和写法,但是个别学生可能还没有准确的掌握和理解,这就要教师进行耐心引导。接着我给学生出示了交流提纲,组织学生在组内进行交流展示、整理学习内容。
(1)谈谈一个小数怎样读?
(2)谈谈一个小数怎样写?
(3)小数的数位和计数单位相同吗?请举例说明。
通过交流展示,学生熟练地掌握了小数的读法和写法,正确的理解了小数的数位顺学表,纠正了数位和计数单位这两个常混淆的数学概念。
2.以旧知识为铺垫,突破重难点
数学新课程标准要求我们在教学中要从学生的经验和已有的知识结构作为出发点,通过新旧知识的联系,使学生获得基本的数学技能。因此我们要在学生已有的知识基础上,紧密联系实际,运用具体事例,引导学生以旧引新,层层递进,来实现重难点的突破。例如《分数乘法应用题》的教学中我主要是抓住一下两个层次进行教学。
(1)求一个数的几分之一
一桶油重100千克,2桶油重多少千克?
①100×2=200(千克),就是求100的2倍是多少。
②一桶油重100千克,半桶(桶)油重多少千克?
100×=50(千克),就是求100的一半是多少,也就是100的是多少。
③一桶油重100千克,桶油重多少千克?
100×=25(千克),就是求100的是多少。
在这个过程中,①是旧知识,求一个数的几倍是多少?②是新知识,但学生对“一半”已有生活经验,进而从整数扩展到二分之一。③是拓展应用,将学生的理解向几分之一延伸。
(2)求一个数的几分之几
①1箱饮料12瓶,箱饮料多少瓶?
12×=3(瓶),就是求12的是多少。
②1箱饮料12瓶,箱饮料多少瓶?
12×=9(瓶),就是求12的是多少。
③1箱苹果重42千克,箱苹果重多少千克?
42×=35(千克),就是求42的是多少。
在这个过程中,①、②主要是将几分之一扩展到几分之几。③是对求一个数的几分之几的巩固练习。
通过以上两个环节的教学,学生通过对数学知识系统的分析与探究,挖掘出了隐含于习题中相应的重难点知识,并且寻找到了知识与技能的结合点,使学生在掌握重难点知识的同时获得了相同应的数学技能。
(下转第67页)(上接第65页)
3.在实际操作中,突破重难点
数学是一门实践性很强的学科,许多数学问题只要通过实践操作就能迎刃而解。所以在教学中我们应多给学生创造动手操作的机会,让学生在实际活动中领会知识,突破重难点。例如在《三角形的内角和》的教学中,我首先给学生三种不同类型的三角形学具,让他们用量角器量一量每个三角形的三个内角各是多少度,然后求出它们的内角的和。通过动手测量,学生得到三角形的内角和在180°左右。接下来我引导他们把每个三角形的三个内角剪下来,拼一拼,看能拼成一个什么样的角。这样学生很快完成了操作,得出可以拼成一个平角,即180°。最后我组织学生讨论、交流,得出三角形内角和是180°。在教学《三角形三边的关系》时,我首先让学生拿出6厘米、7厘米、8cm长的三根小棒,在桌子上摆出三角形,学生非常轻松自如地摆出了三角形,接着我又让他们拿出4cm、5cm、9cm长的三根小棒摆三角形,结果学生翻来覆去怎么摆也摆不出来。在学生动手操作的过程中,有学生提出疑问,同样都是三条边,为什么后面三根摆不出三角形呢?通过学生疑问,将本节课的重难点活灵活现的摆在学生面前。最后通过我的启发和学生的讨论下,他们自己总结得出结论:“三角形任何两边之和要大于第三边”。
4.在启发互动中,突破重难点
在数学教学中,有些知识难度大,学生又不能独自探究出结论,这时教师若能抓住问题的突破口,巧妙采用师生互动、合作交流等方式,设计出精巧的问题,在师生互动中教师适时给予启发点拨,学生就能豁然开朗。例如在《轴对称图形》的教学中,如何画出所给图形的对称图形是本节课一大难点,我设计了如下几个问题:
(1)所给图形是由什么组成的?(线段)
(2)一条线段有两个端点,在所给图形中你能找到几个点?(两个端点)
(3)这个点(指着其中的一个点)在对称轴的右边一定会有一个点与它完全重合,谁愿意上来指一指?你是怎么找到的?(生纷纷举手,上台展示学习成果)
这样,在教师的启发诱导下让学生教学生,更容易突破难点,并且最大限度地发挥了学生主观能动性,调动了学生学习数学的积极性,提高了学生课堂参与率。
三、巩固练习,围绕重难点
课堂练习是巩固学生所学知识的重要环节。因此,新知识教学后教师要围绕重难点,由浅入深,由熟到巧,分层次有重点的进行练习。例如在《小数的加减法》教学后,我主要进行以下练习:
1.口算练习
2.5+0.9= 7.8+1.6= 0.39+0.15= 3-1.4=
目的:培养学生口脑并用的能力
2.列竖式计算,并验算
3.64+0.48= 21.56+6.74= 50-37.5=
目的:训练学生笔算能力,纠正个别学生计算时数位对不齐的现象,同时培养学生养成验算的良好习惯。
3.用小数计算
5元6角2分+3元零9分 10千克-2千克800克
目的:通过知识的扩展延伸与应用,将所学内容与生活紧密联系在一起,达到活学活用的效果。
当然,在课堂教学中如何突破重难点,并没有固定不变的模式。只要我们教师在实践中不断地研究教材、了解学情、摸索教法、精心设计教学案例,全心全意投入到工作之中。相信一定能够找到突破重难点的良策妙药,以实现良好的教学效果。
4. 数学突破难点的方法有哪些
数学突破难点的方法有哪些
数学突破难点的方法有哪些,数学对于很多女孩子来说,是一个难题,很多女孩子在高考的时候或者平时考试的时候,都是因为数学拖了后腿,我和大家一起来看看数学突破难点的方法有哪些。
1、实验探究式教学突破法。
新课程改革与教学倡导的“以探究为核心”的课堂教学模式,要求学生在自主、合作、探究的学习基础上,通过教师有效的引导,用自己已有的知识主动去发现,猎取新知识、新技能,从而培养正确的科学态度以及创新精神与实践能力。如何在探究的教学理念下,有效地突破教学的重难点,是课堂教学中的重要内容和环节,也是维持学生进一步探究解决实际问题形成探究能力的重要基础和保证。
2、多媒体辅助教学突破法。
运用多媒体教学,如《草船借箭》一文,在教学中我运用多媒体进行教学,对文章的现象进行分解和综合,使教学突出重点,突破难点,循序渐进,很好的体现由浅入深,从简到繁,由易到难的过程。同时多媒体不受时间和空间的限制,可以变大为小、变小为大,还能变快为慢、变慢为快,灵活多变,运用自如,促使学生去思考。多媒体辅助教学能强化感知,突破重点、难点。
3、运用迁移规律教学突破法。
4、精选练习教学突破法。
精心设计课堂练习是提高教学质量的重要保证,因为学生是通过练习来进一步理解和巩固知识的,也必须通过练习,才能把知识转化成技能技巧,从而提高综合运用知识的.能力。如课文《匆匆》一文,在教学中我就是用了精选练习教学突破法,所谓精选就是精心设计练习,关键在于“精”,精就是指在新课上设计的练习要突出重点——新知识点。围绕知识重点多层次一套一套地让学生练习。
1、细心地发掘概念和公式
很多同学对概念和公式不够重视,这类问题反映在三个方面:
一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。
二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。
三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?
我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
2、总结相似的类型题目
这个工作,不仅仅是老师的事,我们的同学要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。
这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。
我们的建议是:“总结归纳”是将题目越做越少的好办法。
3、收集自己的典型错误和不会的题目
同学们难面对的,就是自己的错误和困难。但这恰恰又是需要解决的问题。
同学们做题目,有两个重要的目的:
一是,将所学的知识点和技巧,在实际的题目中演练。
另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。
我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。
我们的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。
4、就不懂的问题,积极提问、讨论
发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。
原因可能有两个方面:
一是,对该问题的重视不够,不求甚解;
二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。直到无法赶上步伐。
讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象好是与自己水平相当的同学,这样有利于大家相互学习。
我们的建议是:“勤学”是基础,“好问”是关键。
5、注重实战(考试)经验的培养
考试本身就是一门学问。有些同学平时成绩很好,上课老师一提问,什么都会。课下做题也都会。可一到考试,成绩就不理想。
出现这种情况,有两个主要原因:
一是,考试心态不不好,容易紧张;
二是,考试时间紧,总是不能在规定的时间内完成。
心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。做题速度慢的问题,需要同学们在平时的做题中解决。自己平时做作业可以给自己限定时间,逐步提高效率。另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。
我们的建议是:把“做作业”当成考试,把“考试”当成做作业。
5. 怎样把握数学教学重难点
小学数学这门学科有着极强的抽象性与系统性,各类知识有机构成完善的知识体系,如果其中一个重点或者难点知识,学生没有把握,就会影响其整体知识的构建,因此,在小学数学中,不仅要重视基础知识的传授,还要把握好重点与难点。
一、从全局角度把控重点与难点
要把握重点、突破难点,必须要搞清楚什么是重点、什么是难点,只有掌握这一问题,教学活动才能够具备针对性。教学重点,就是教学内容中具有突出地位的教学内容,在后续的知识点中,应用十分广泛,如各种法则、概念、策略、性质等;难点就是根据学生的认知水平与知识知识来看,多数学生理解起来都存在困难的知识。
重点是客观存在的,而教学重点则根据学生的实际情况,主观存在,作为教师,必须要明确具体的难点和重点知识。
首先,把握教材,处理好各类知识点的联系。教材是重点和难点的起源,也是学生学习和教师教学的重点依据,作为教师,要深入研读教材,挖掘出教材中的核心知识点,从全局上把握重点,做到胸有成竹,这样才能够提高小学数学的教学有效性。
其次,根据学生具体情况来确定重点。
每一个学生都是独立存在的个体,他们的生活背景不同,学习能力、认知能力都有所差异,因此,我们必须要了解每个班级学生的基础知识水平,严格按照因材施教的原则开展教学。在具体的教学活动中,要注意观察学生的表现,建立成长备案,查看学生的知识接收能力与学习变化,满足每一个层次学生的学习需求,及时根据学生的学习状态调整重点和难点。
二、注重数学知识之间的迁移
每一个数学知识点之间,都不是独立存在的,而是具有客观的联系,如果将其割裂开来,数学课堂无疑是低效的,也会影响学生的知识掌握情况。
小学阶段的认知活动是一个从简到繁的过程,需要基于特定的知识基础上,要帮助学生突破重点和难点知识,必须要注重数学知识的迁移。
新知识的教学要以旧知识作为基础,找到两者的衔接之处,促进知识之间的迁移,有了以往学习过的知识作为铺垫,学生学习起来就容易得多。
如,在关于《平行四边形面积》的教学中,其中的重点和难点就是面积的推导,在学习时,可以先复习长方形、三角形面积求解方式,引导学生思考,看平行四边形与自己以前学习过的哪个图形相似,将其转化为自己学习过的一个图形。经过对比与分析后,学生就可以知道,平行四边形与自己以前学习过的长方形有着很多相似之处,这样推导起来就变得更加容易了,教学难点与重点也得到了很好的突破。
三、借助多媒体突破难点与重点知识
多媒体技术的应用为小学数学教学带来了全新的生机,合理应用多媒体教学,
可以改变传统课堂中粉笔+教材+黑板的教学模式,将知识点用形象趣味的视频、图片、声音、文字来展示出来,让学生的各类感官都可以参与进来,将抽象的数学知识形象化,将静止的图象生动形象的为学生展示出来。如,在关于《长方体旋转》这一课的教学中,可以利用多媒体播放关于长方体展开的样子,让学生认识到,一个长方体是由六个面组成的,且这六个面之间是两两相对的,这样,学生就会对这一图形形成全面的认识,更好的解决了难点和重点知识,锻炼了学生的空间思维能力,让他们不再惧怕几何知识。
四、利用生长点来解决重点与难点
实施证明,任何一个新知识的产生,都有着一定的知识生长点,新知识和就知识之间,有着一些相似之处,在教学时,要突出两者之间的“共同点”与“连接点”,在讲解时,注意与学生已有的生活相联系,让学生调动起自己头脑中的认知概念,
以此来更好的理解数学难点和重点。
例如,在《平均分》的教学中,可以提前准备一些物品,将其平均分为数份,让学生参与到“平均分”的具体实践中,最后,让学生采用不同的练习方法,强化对相关知识点的理解。
此外,在日常教学中,要重视对比,利用类比和分析来辨析容易混淆的知识点,避免新知识的学习对原有知识产生干扰。
例如,在《化简分》的教学中,可以与《求比值》进行对比,前者是为了得到整数比,而后者可以写成小数和分数,这样对比下来,学生就很容易理解了。作为教师,要发挥主导作用,处理好讲授与自主学习的关系。
通过有效的措施,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学思维训练,获得基本的数学活动经验。
在小学数学学科中,有大量的重点和难点知识,关于重点与难点知识的教学,并非是一成不变的,在日常教学中,我们要留心观察,在备课方面多动脑筋,钻研教材,结合学生的具体情况把握重点、突破难点,科学安排教学活动,精心设计提问,找到解决重点和难点知识的关键点。
6. 如何突破数学课堂教学重难点感悟与反思
教学重点是学生掌握知识的前提,突破难点是教学成功的关键。一堂课上的好不好,关键看教师是否正确地讲解了教材的基本内容,是否突破了教材的重点及解决了教材的难点,使学生真正地理解和掌握了教材的基本知识。在数学教学中,总担心某个知识没讲全学生理解不透彻,总是反复强调,每一个角落讲到。结果学生学得吃力 ,最后教学质量还是上不去。其中一个很重要的原因 ,就是教学中没有把握住教材的重点与难点 ,导致教学效果低下。如何在课堂教学中真正抓住重点、突破难点呢?我觉得不同的教学内容应该采取不同的方式,下面我就谈一谈对此问题的点滴体会。一、 钻研教材认真备课,是抓住每节课的重点突破难点的前提。小学数学课程标准指出:小学数学教学,要使学生不仅长知识,还要长智慧……,培养学生肯于思考问题,善于思考问题。做为一个数学教师,要明确这一目的,把我们的主要精力,放在发展学生智力上,着眼于培养和调动学生的积极性和主动性,引导学生学会自己走路,首先自己要识途。我感到,要把数学之路探清认明,唯一的办法就是深钻教材,抓住各章节的重点和难点,备课时既能根据知识的特点,又能根据学生认识事物的规律,精心设计,精心安排,取得事半功倍的效果。因此,有课前的充实准备,就为教学时突破重点和难点提供了有利条件。二.抓住知识间的衔接,运用迁移的方法突破重点和难点 小学数学学科的特点之一就是系统性很强,每项新知识往往和旧知识紧密相连,新知识就是旧知识的延伸和发展,旧知识就是新知识的基础和生长点。有时新知识可以由旧知识迁移而来,可同时它又成为后续知识的基础。因此,数学知识点就像一根根链条节节相连、环环相扣。由此可见,如果老师能够善于捕捉数学知识之间的衔接点,自觉地以“迁移”作为一种帮助学生学习的方法,以旧引新、旧中蕴新,组织积极的迁移,就不难实现教学重、难点的突破了。 例如分数的基本性质:分数的基本性质是这样叙述的:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。教学时,如果把它作为一个孤立知识点来教学,通过观察1/2=2/4=6/12从左到右、从右到左的逐一变化,一遍又一遍的叙述由谁到谁的变化过程,老师的目的就是想让学生在不断的重复中体会这一规律的存在,学会用同一语式去表达,但是到最后学生也未必能够结合自己的理解,用一句比较简练、准确地数学语言来描述出分数的基本性质。如果,我们在教学前先来分析一下分数的基本性质的知识基础,就会找到与它的叙述非常相似的“商不变的性质”和沟通两者联系的“分数与除法的关系”;此时我们为了突破“引导学生归纳概括出分数的基本性质” 教学难点,就可以在课前的复习环节安排对于“商不变的性质”的叙述和 “分数与除法的关系”的练习。 由此可以看出,在数学教学过程中,要重视揭示和建立新旧知识的内在联系,从已有的知识和经验出发,运用迁移的方法来突破重难点。这种方法得以实施的关键在于学生对旧知识的掌握应该是熟练的,他所掌握的前期知识是牢固的。因此,强调我们每一年段的老师都要把自己视为“把关教师”,让学生“走稳每一步”。三、在实际操作、观察、归纳等活动中突破重点和难点。动手操作作为一种重要教学手段,是以学生亲身经历的方法来完成教学任务,它主要给学生充分的实践机会,让学生实际操作、观察、归纳等活动中领会新知识。如,在教学《圆锥的体积》的计算公式时,我先拿出等底等高的圆柱、圆锥各一个,让学生观察,这两个物体有什么相同点?(等底等高),接着问:“他们的体积相等吗?”(不相等)接着问“既然不相等,那么他们的体积有什么关系?”先让学生猜测,然后分组实验,请学生用圆锥的容积装满水倒入圆柱体容器中,看一看几次能到满?通过操作,学生很快发现:圆锥的体积等于等底等高圆柱体积的三分之一,反之,圆柱体积是等底等高圆锥体积的三倍。这样学生对学习内容记忆深刻,突破了教学中的重难点。又如在讲解《三角形面积》的计算公式时,可让学生先剪两个一模一样的三角形,拼成一个平行四边形。这样学生从三角形与平行四边形的底、高、面积之间的关系推导出三角形面积的公式一目了然。 四、精心设计练习,抓住重点突出难点课堂练习是数学课堂教学的一个重要的有机组成部分,是学生掌握知识、形成技能、发展智力、挖掘创新潜能的重要手段。赞可夫曾说过:“不要进行盲目的,互不联系的,大量机械的练习”,这就要求练习设计要有针对性、目的性,避免盲目性”。1、明确练习课的教学目标,突出重点突破难点。由于很多老师观念陈旧,上练习课从不精心备课,使得在数学练习课教学中存在着极大的随意性和盲目性。练习课必须增强目标的明确性,要对知识理解做到心中有数;要对知识掌握的深浅度以及与已有知识的贯通与联系,作出预先的考虑与估计;要对知识运用的熟练程度作出精心安排和把握,对解决这些问题的对策也应该做到事先有独到的考虑。忌无的放矢,为练习而练习,甚至泡制“题海”
7. 如何突破小学数学教学中的重点和难点
1.抓住知识间的衔接,运用迁移的方法突破重点和难点
我们先来关注数学的学科特点。小学数学学科的特点之一就是系统性很强,每项新知识往往和旧知识紧密相连,新知识就是旧知识的延伸和发展,旧知识就是新知识的基础和生长点。有时新知识可以由旧知识迁移而来,可同时它又成为后续知识的基础。因此,数学知识点就像一根根链条节节相连、环环相扣。
由此可见,如果老师能够善于捕捉数学知识之间的衔接点,自觉地以“迁移”作为一种帮助学生学习的方法,以旧引新、旧中蕴新,组织积极的迁移,就不难实现教学重、难点的突破了。
案例一:分数的基本性质
分数的基本性质是这样叙述的:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
教学时,如果把它作为一个孤立知识点来教学,通过观察1/2=2/4=6/12从左到右、从右到左的逐一变化,一遍又一遍的叙述由谁到谁的变化过程,老师的目的就是想让学生在不断的重复中体会这一规律的存在,学会用同一语式去表达,但是到最后学生也未必能够结合自己的理解,用一句比较简练、准确地数学语言来描述出分数的基本性质。
如果,我们在教学前先来分析一下分数的基本性质的知识基础,就会找到与它的叙述非常相似的“商不变的性质”和沟通两者联系的“分数与除法的关系”;此时我们为了突破“引导学生归纳概括出分数的基本性质” 教学难点,就可以在课前的复习环节安排对于“商不变的性质”的叙述和 “分数与除法的关系”的练习。
可以运用迁移方法教学的知识点还很多,如除数是两位数的除法,它在学习了除数是一位数的除法笔算的基础上迁移学习,只是增加试商和调商且难度增大、方法更加灵活。再如,乘数是多位数的乘法是在学习一位数乘法的基础上迁移,运算方法相同。
由此可以看出,在数学教学过程中,要重视揭示和建立新旧知识的内在联系,从已有的知识和经验出发,运用迁移的方法来突破重难点。这种方法得以实施的关键在于学生对旧知识的掌握应该是熟练的,他所掌握的前期知识是牢固的。因此,强调我们每一年段的老师都要把自己视为“把关教师”,让学生“走稳每一步”。
2.抓住知识间的联系,采用转化的策略突破重点和难点
转化——是指解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“化归与转化的思想方法”一个新知识往往是旧知识的发展和结果,也就可以转化为旧知识来认识和理解。在教学中,教师如能做到“化新为旧”,抓住知识间的“纵横联系”,帮助学生形成知识网络,逐步教给学生一些转化的思考方法,使他们能用转化的观点去学习新知识、分析新问题才能使他们对知识的理解不断深刻,最终达到融汇贯通。
例如:三角形面积、梯形面积、圆面积公式的推倒。
3.强化感知参与,运用直观的方法突破教学重难点
直观——是指在教学过程中充分运用实物、模型、多媒体计算机等教学用具,通过实际操作、观察、思考的活动,帮助学生理解和掌握数学知识,促进学生的思维发展。直观教学是小学数学教学活动中的一种最常用的也是最为有独立自主的教学方法。
(1)动手操作,解决重点难点问题
如:圆的面积的推导
(2)通过画图,解决重点难点问题
可以用图帮助解决问题,如(
(3)直观演示,解决重点难点问题
比如:用课件演示物体的平移和旋转、用课件演示钟表一天的转动,学生理解了教学重点24时计时法的含义、在学习长正方体的体积计算时,如果利用课件演示来帮助学生体会体积实际上就是一个形体中含有体积单位的个数,那就在交流汇报这个环节不至于浪费时间了。
(4)编制歌诀,帮助学生直观的记忆
如教学的年月日进行歌诀记忆。还有教学五年级因数和倍数单元,概念又多又易混淆。教师可以引导学生自编歌谣来帮助记忆。如让学生背100以内质数表,单去死记硬背一个一个的数相当困难,就可以引导学生把这些数分组变成歌谣来记:二、三、五、七和十一,十三后面是十七,十九、二三、二十九,三一、三七、四十一,四三、四七、五十三,五九、六十一、六十七,七一、七三、七十九,八三、八九、九十七。
再如求最大公因数和最小公倍数也可以用下面歌谣来记:
两数互质要记牢最大公因就是1,最小公倍是乘积;
两数倍数关系时,最大公因取较小,最小公倍取较大;
两数关系不明显,就用短除来试商,最大公因乘半边,最小公倍乘一圈。
运用好直观方法的关键是化抽象为具体,激发学生的学习兴趣,促进学生对知识的理解,发展思维能力。
教学中突破教学重难点的方法还有很多,以上介绍的方法是针对一些知识点的教学单独使用的情况,这些方法当然也可以联合使用。总之,我们要做到在教学中切实提高课堂效率,就要深入研究教材和学生,努力实现“教无定法,贵在得法”。
8. 小学数学课如何突出重点突破难点
1.把握好重点和难点是突出重点、突破难点的前提。通过上文的分析,我们可以得出这样的结论:要想在教学中做到突出重点、突破难点,首先是深钻教材,从知识结构上,抓住各章节和每节课的重点和难点。其次是备足学生,根据学生实际的认知水平,并考虑到不同学生认知结构的差异,把握好教学重点和难点。课前的精心准备、准确定位,就为教学时突出重点和突破难点提供了有利条件。
2.找准知识的生长点是突出重点、突破难点的条件。
小学数学是系统性很强的学科。数学教学就是要借助于数学的逻辑结构,引导学生由旧人新,组织积极的迁移,促成由已知到未知的推理,认识简单与复杂问题的联系,不断完善认知结构。因此,新知识的形成都有其固定的知识生长点,找准知识的生长点,才能突出重点、突破难点。我们可依据以下3点找准知识生长点:(1)有的新知识与某些旧知识属同类或相似,要突出“共同点”,进而突破重、难点;(2)有的新知识由两个或两个以上旧知识组合而成,要突出“连接点”,进而突破重、难点;(3)有的新知识由某旧知识发展而来的,要突出“演变点”,进而突破重、难点。如教学“解决问题的策略”,虽然每个策略都有其适用的题目,但是在形成新策略的过程中要综合应用已有的策略,如学习替换与假设策略时要用到画图、列表等策略,且综合法与分析法贯穿始终。所以这一单元的教学,是数学认知结构改造的过程,要突出“演变点”,进而突破重、难点。
3.采用合适的教学方式是突出重点、突破难点的关键。
《全日制义务教育数学课程标准(修改稿)》指出:教师的教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与自主学习的关系,通过有效的措施,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,得到必要的数学思维训练,获得基本的数学活动经验。认真阅读这段话,可以知道:根据学生实际,采用合适的教学方式是突出重点、突破难点的关键。如教学“解决问题的策略”时,合适的教学方式是独立思考——尝试解题——合作交流——比较归纳——反思小结——形成体验。这样的教学方式,能使学生在经历问题解决的过程中,感悟解题策略,形成解题策略,体会策略价值,自觉应用策略解决问题,真正做到突出重点和突破难点。
4.积累基本的数学经验是突出重点、突破难点的基础。
基本数学经验是指在数学目标的指引下,通过对具体事物进行实际操作、考察和思考,从感性向理性飞跃时所形成的认识。数学经验源于日常生活经验,高于日常经验。小学数学活动可分为4类:直接来源于生活的数学活动;间接来源干生活的数学活动;为数学学习设计的纯粹数学活动;意境连接性的数学活动。“解决问题的策略”教学属于间接来源于生活的数学活动,因此教师要设计有层次的数学学习活动,引导学生经历解题过程,进行体验和反思,把解决问题中的体验加以整理,对获得的数学经验进行反思,对学生的认知过程再认知,从而掌握解题策略,感受策略价值,积累数学经验,有效突破教学重、难点。以五年级上册“解决问题的策略——列举”为例,教学例1要让学生经历无序到有序的过程,学会用列表的方法有条理地列举;教学例2要引导学生用列举的策略解决问题,要不重复、不遗漏地进行思考,感受用列表、打“?”法列举的简洁、有序;教学例3要启发学生从不同的角度分析问题,进一步感受列举策略的特点。 教学每道例题,都要引导学生回顾和反思,积累数学经验,树立主动用策略解决问题的意识。
5.信息技术的合理应用是突出重点、突破难点的保障:
现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响。现代信息技术已经成为学生学习数学和解决问题的强有力工具。因此,在突出教学重点和突破教学难点的过程中,要充分发挥现代信息技术的优势,化动为静,化隐为显,化难为易,化抽象为直观,并通过与传统技术的联合与互补,有效促进教学重难点的突破。如:教学六年级上册“解决问题的策略——替换、假设”时,利用信息技术,通过画图直观演示用替换和假设法解决问题的过程,使学生会用这两种策略分析数量关系,保证了重难点的顺利突破。