❶ [数学][物理]x=my+b这个试子是什么意思,有什么用,怎么用。
b是在x轴上的截距,m是函数斜率的倒数 原函数是y=(x-b)/m,只不过变了一下比较明了了而已
❷ 数学设方程X=my+b,有什么条件吗
这位同学,直线方程是x=my+b的时候可以包含直线斜率不存在的情况,但不包含斜率为0的情况,这个通常在解析几何里运用,而直线方程是y=kx+b的时候,其不包含斜率不存在的情况,希望能帮助到你!
❸ 小学数学全部公式
1 、正方形 C:周长 S:面积 a:边长
周长=边长×4 C=4a 面积=边
2 、正方体 V:体积 L: 棱长和
(1)棱长和=棱长×12 L=12a
(2)表面积=棱长×棱长×6 S表=a×a×6
(3) 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形 C:周长 S:面积 a:长 b: 宽
周长=(长+宽)×2 C=2(a+b) 面积
4 、长方体 V:体积 s:面积 L: 棱长和 a:长 b: 宽 h:高
(1)棱长和=(长+宽+高)×4 L=4(a+b+h)
(2)表面积=(长×宽+长×高+宽×高)×2 S表
(3)体积=长×宽×高 V=abh
5 、三角形 s:面积 a:底
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底 三角形
6、 平行四边形 S:面积 a:底 h:高
面积=底×高 s=ah
7 、梯形 S:面积 a:上底 b:下底 h:高
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
梯形高=面积 ×2÷(上底+下底) 梯形上
❹ 高中数学解析几何解答题,直线方程用x=my+b的形式和y=kx+b的形式有什么不同
第一种是不包括与x轴平行的情况的直线,也就是不存在斜率为0的情况
第二种是直线的一般式,不包括与x轴垂直的情况
如果根据题意知道所求直线不和x轴平行,可以设成第一种方程,这样方便解题.
❺ 初三数学公式是什么
初三数学公式有很多,关于常见的列举如下:
1、周长公式:初中周长公式常见的有以下几类:
长方形周长=(长+宽)×2 ,C=2(a+b)
正方形周长=边长×4,C=4a 。
圆周长=直径×圆周率,C=2πr 。
2、面积公式:初中几何面积公式常见的有以下几类:
长方形面积=长×宽 ,S=ab 。
正方形面积=边长×边长 ,S=a²。
三角形面积=底×高÷2 ,S=ah/2平行四边形面积=底×高 ,S=ah梯形面积=(上底+下底)×高÷2 ,S=1/2(a+b)h圆形面积=半径×半径×圆周率 ,S=πr扇形面积=半径×半径×圆周率×圆心角度数(n)÷360 ,S=nπr²/360。
3、一次函数公式:一次函数为直线,表达式有以下几种
点斜式:y-b=k(x-a);已知斜率k以及过点(a,b)
两点式:(y-b)/(x-a)=(b-d)/(a-c);已知两点(a,b),(c,d)斜率为(b-d)/(a-c)斜截式:y=kx+b;已知斜率k,y轴截距为b即过点(0,b)根据点斜式
截距式:x/a+y/b=1;已知x,y轴截距分别为a,b即过两点(a,0),(0,b)根据两点式。
4、二次函数表达式:二次函数为抛物线,表达式有以下三种。
一般式:y=ax²+bx+c;(a≠0)
顶点式:y=a(x-h)²+k; [a≠0定点(h,k)]
交点式:y=a(x-x1)(x-x2);[抛物线与x轴交于(x1,0)(x2,0)]
5、二次函数图像:二次函数表达式y=ax²+bx+c;二次函数是轴对称图形。
二次项系数a决定开口方向(a>0,开口向上;a<0,开口向下)
对称轴:x = -b/2a
顶点坐标:[ -b/2a,(4ac-b²)/4a ]
Δ=b²-4ac;
抛物线与x轴交点个数(Δ>0时,2个交点;Δ=0时,1个交点;Δ<0时,没有交点)。
❻ 初中数学常用重点公式整理
想要学好数学公式是非常重要的,下面我就大家整理一下 初中数学 常用重点公式整理 ,仅供参考。
常用导数公式
1.y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2
初中数学公式之正弦定理正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理余弦定理 b2=a2+c2-2accosB 注:角 B 是边 a 和边 c 的夹角
二次函数顶点坐标公式(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0),则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a)
(2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a≠0).
(3)交点式(与x轴):y=a(x-x1)(x-x2)
(4)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.
说明:
(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点.
(2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2).
两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式Sin(2a)=2sinacosa
cos(2a)=cos^2(a)-sin^2(a)=2cos^(a)-1=1-2sin^2(a)
tan(2a)=2tana/(1-tan^2(a))
ctg 2A=(ctg 2A-1)/2ctga
半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
以上就是我为大家整理的初中数学常用重点公式整理 。