导航:首页 > 数字科学 > 如何申请高中数学的课题

如何申请高中数学的课题

发布时间:2023-02-14 13:04:00

1. 高中研究性学习课题,急急急!

数学研究性学习是学生数学学习的一个有机组成部分,是在基础型、拓展型课程学习的基础上,进一步鼓励学生去探求知识及应用所学知识解决数学的和实际的问题的一种有意义的主动学习,是以学生动手动脑主动探索实践和师生之间及学生之间相互交流为主要形式的学习研究活动。它以研究课题为载体,使学生通过最基础的研究活动,学会科研的基本方法,并初步形成严谨的科学精神和科学态度。
在数学研究性学习的教学中,师生共同建立起平等、民主、教学相长的新颖关系,能营造一个使学生勇于探索、勇于争论、相互学习鼓励的良好学习氛围。数学研究性学习注重问题的解决,但更加关注学生的探究学习过程。
用于数学研究性学习的材料,一般是以课题形式为主,一个课题探讨一个专题。对数学研究性学习的课题,既要是学生所学数学知识的综合与实际应用,又要对学生探究和解决问题有较好的训练价值,对高中学生来说,较好的课题应该是学生在生活实践中有体验的数学问题,或者是与当地社会、经济发展密切相关的数学问题。因此在确定研究课题时,不仅由教师提供,而且更要鼓励学生通过对社会生活的观察、调查、思考,抽象概括出数学问题,从而形成研究课题。下面从课题确定的原则和来源两个方面来谈谈数学研究性学习中研究课题的选择。
一、确定研究课题的原则
1.适应性原则
学生是研究课题的研究者和解决者,是研究性学习的主角,因此,研究课题的选择要与学生现有的知识水平相适应,课题的难度要掌握在让学生“跳一跳够得着”,太难或太容易的问题都不宜作为课题让学生研究,选题时要充分利用学生所学知识,使学生通过对一个问题的深入研究,加深对所学知识的掌握和应用,了解科学研究的过程和基本方法。
2.问题性原则
在选择课题时,不是提供一篇学生没有学过的教材让学生去学习、理解与记忆,而是呈现给学生一个需要学习和探究的数学问题,这种问题往往是一些背景材料,让学生运用所学知识通过数学建模去解决。
3.开放性原则
数学研究性学习具有最大的时空开放性,要求学生在确定课题后,走出课堂和书本,通过媒体、网络、调查等多种渠道,收集信息资料,选用合理的研究方法,得出自己的结论。另外,由于各人的兴趣爱好、生活经验及学习能力的差异,对课题的理解,研究目标的定位,研究过程和方法的设计,手段的应用以及研究结果的表达可以各不相同。所以,所选课题应该能让学生应用自己已有的数学知识,从不同的角度,不同的层面得到解决。同时,课题解决过程中学习时间的安排,课题切入点的确定,研究方式的选择,结果的表达等方面均要有相当大的灵活度,为学习者和指导者发挥个性特长和才能提供足够的空间,而不能强调结论的唯一性与标准化。
4.社会性原则在确定研究课题时,应强调数学与社会生活实际的联系。数学研究性学习课程的主要目标是培养学生应用所学数学知识去发现问题、解决问题的能力和意识,因此,我们在选择课题时,应特别关注与社会发展及人民生活密切相关的数学问题,使学生通过研究课题的研究学习,学会发现问题的方法,培养创新意识和能力,并进一步体会数学应用的广泛性。
5.实践性原则
实践性是研究性学习的一个特点。数学研究性学习要使学生在解决研究课题的过程中,通过亲身参与社会调查、信息收集与处理、结论表述与分析验证等一系列实践活动,获取亲身参与研究与探索的体验,体会科学研究的全过程,并使他们逐步形成善于质疑、乐于探究、勤于动手、努力求知的积极态度,激发他们探索、创新的欲望。
二、数学研究课题的来源
1.深入研究教材,从教材中取得课题
数学教材是研究课题的重要来源,新编的高中数学教材(练习部分)已经为我们提供了大量的研究性学习的课题。如果我们注意挖掘教材,就可以从中找到很多适合学生探究的课题。

这些课题的特点是学生利用近阶段所学数学知识,通过探究与合作,教师作适当的指导,都能很快得到解决,具有“短、平、快”的特点。
2.结合生活、联系社会实际选择课题数学的应用是广泛的,要鼓励学生从生活实际、生产实际中把实际问题提炼成数学研究课题,引导学生“留心观察,处处皆数学”。也可由教师选编一些与社会、生产、日常生活密切相关的研究课题供学生选择解决,这些课题既要有一定的实用价值,又要有一定的趣味性,以吸引学生进行研究探索。例如以下的一些课题:
(1)去银行存钱,存五年期和一年期的年利率是不同的。请学生调查银行存款利率,然后解决以下问题:甲、乙两人在同一天各去银行存入1000元钱,甲存为五年期,乙存为一年期并在每年到期时领取本息后一并再存为一年期,每次领取时要交纳20%的利息税,问五年后,甲乙两人谁的收益大,两人的本息合计金额差是多少?
(2)在一条生产流水线上有5台机器工作,它们间隔的距离是相等的,我们要在流水线上设一个检验台,零件经检验合格后才能进入下一道工序,若5台机器的工作效率相同,问检验台应设在何处,可使移动零件所走的路程之和最小?如果是n台机器呢?如果这些机器的工作效率各不相同呢?
(3)调查报亭卖报情况(进价、售价及卖不出去而退回每份报纸赔钱多少),统计一个月的销售情况,为报亭主人决策,使之收益最大。
(4)调查保险公司养老保险险种及分红方法,某人在40足岁时参加保险,或将应交保额逐年存入银行,假设此人预期寿命为75足岁,请你对这两种投资方式进行比较,确定此人是投保收益大,还是存银行收益大。
(5)叫做“黄金数”,一个矩形的宽与长之比为黄金数的叫做“黄金矩形”,这样的矩形看起来比较美观,因此有人认为一般的报刊版面的宽与长之比是黄金分割比,请你去学校阅览室实地测量10种报纸杂志的宽与长之比,找出它们的比值大致是什么数,为什么用这个数?
(6)现在很多人家都安装了太阳能热水器,请你用所学的数学、物理、地理知识说明在各个不同季节,热水器安放的倾斜角为何值时,可使正午时阳光直射热水器,从而取得最大热效率。根据你的研究,你可以向热水器生产厂提何建议?
3.由学生自行提出问题,确定课题高中学生已有一定的观察力和想象力,一旦他们研究问题的积极性被调动起来,他们观察事物、提出问题、解决问题的能力往往超乎教师的想象。以下几个问题就是由学生通过观察生活、总结提炼而提出来的:
(1)节假日随父母去超市购物,去收银处付款时往往要排很长的队,如何合理安排收银机,使顾客排队时间最短?
(2)商店经常打出打折的招牌来吸引顾客,“打折”背后究竟有什么奥妙,进价和原价到底是多少,调查进价和原价,计算“打折”后的实际利润是多少?
(3)居民住宅区中两幢楼房之间的距离为多少时,可以使每幢房子底楼在冬季每天10点到下午2点能晒到太阳?
(4)下雨天用各种不同的容器收集雨水,分别计算降雨量,与气象台的预报作比较。
(5)足球运动员在射门时,面对对方守门员,射门时的角度、球速与守门员扑球时的移动速度有何关系,能将球射入球门?对学生提出的问题,需要教师从可行性、实用价值等方面进行分析指导,以防不切实际。但要以鼓励为主,对目前限于知识结构暂时无法解决的问题,可让学生提出解决问题的设想,切不可轻易否定而打击学生的积极性。有的课题可适当增加条件,以使课题更切实可行。
在实施数学研究性学习时,课题可以在课堂上或课外布置给学生,让学生在课后进行探究学习,收集信息资料做研究,可一人研究,也可以几人合作,教师可作适当的点拨指导,然后在课堂上进行交流,教师主要是做听众,也可发表意见、见解或提出疑问,不要追求结论的完美,要重视学生的参与过程。

2. 高中数学国家级课题如何申报

首先课题的范围不一定要大,可以是教学中一些点滴反思。还要研究课题中存在的背景,现行条件下这个内容所研究到哪一步,

3. 要搞一个有关高中数学的课题但不知道哪些

怎样学好高中数学?首先要摘要答题技巧

现在数学这个科目也是必须学习的内容,但是现在还有很多孩子们都不喜欢这个科目,原因就是因为他们不会做这些题,导致这个科目拉他们的总分,该怎样学好高中数学?对于数学题,他们都分为哪些类型?

高中数学试卷

怎样学好高中数学这也是需要我们自己群摸索一些学习的技巧,找到自己适合的方法,这还是很关键的.

4. 高中研究课题怎么做啊!

如何进行研究性学习(课题研究)

I.选题
进行科学研究选题非常重要。课题选得怎样,关系到研究有无价值,研究能否顺利进行等一系列重要问题。
(一)怎样选择一个好课题
好的课题要符合下面的要求:
1.目的性
科学研究是一项目的性极强的活动,课题的选择必须有明确的目的性。如“节水洁具的设计”,目的就是节约用水。
2.科学性
科学研究是探索真理的活动。科学性是要求我们注重科学价值。所谓科学价值是指科学上的新发现,新创造。也包括对不正确的科学结论给予纠正,对不完整的结论予以补充。
3.创新性
科学研究是对未知领域的探索活动,意在发明、创新、前进。科学研究的选题应体现创新性,这种创新性既可表现为理论、观点、概念的创新,又可以表现为方法上的创新以及应用领域的创新。
对于高中生来说,刚开始参与科学研究,不能要求过高,但必须做到能独立思考问题,有独立的见解。
4.可行性
科学研究是一项严谨求实的活动。教育科研课题的选择必须充分考虑主客观条件,分析课题在实际研究过程中的切实可行性。从主观方面看,自己是否具备课题研究必需的知识水平和研究能力等。从客观方面看,是否有必要的资料、工具、经费等。具体可以从以下几个方面考虑:
第一,人力。
(1)研究兴趣;
(2)基础知识
(3)合作伙伴;
(4)指导教师。
第二,物力。
(1)研究地点;
(2)实验设备。
第三,财力。
(1)资料复印;
(2)调研费用;
(3)交通费用;
(4)实验费用。
第四,时间。
(1)预研究时间;
(2)实验或搜集资料时间;
(3)撰写报告时间;
(4)答辩时间。
请看下面几个科研题目是否符合要求?
浅谈鲁迅小说《药》的双线结构
澳大利亚畜牧业的发展状况调查
网络文学的兴起和发展
第一个题目是许多人研究过的内容,如果没有新的认识和新的研究角度,只能是“炒冷饭”,难以创新。第二个题目是调查性的,但出国考察所需经费较多,所以缺乏可行性。第三个题目来自现实生活,时代感强,处于科技与文学的交叉点,系热门话题,切尚无定论,有价值研究,较容易写出有自己见解的论文。符合前面的四项要求。
(二)课题的来源
一是自己在生活中或学习中遇到的问题。
爱因斯坦曾经说过:提出一个问题往往比解决一个问题更重要。因为解决一个问题也许仅仅是一个数学上或实验上的技能而已,而提出新的问题、新的可能性,从新的角度看旧的问题,却需要有创造性的想象力,而且标志着科学的真正进步。
二是文献资料中提出的尚未解决的问题。
不论资料出自何处,都需要分析整理,选出适合自己的课题来研究。
(三)应注意的问题
第一,
注意课题的难易程度要适中。难度过大,目前的能力还无法完成。课题过于简单,小学生也能完成,就不能够使自己综合运用在高中阶段学过的知识,提高自己解决问题的能力。
第二, 课题的大小要适中。题目过大,往往难度也过大,限于时间和精力,不可能在短时间内完成。我们可以把大课题缩小为对其中某一个问题或几个问题的研究。
第三, 课题的研究要简洁明了。确定了研究的课题,就应当用简洁明了的词语来陈述。

II.制定研究计划
制定研究计划是保证课题按时完成,保质保量完成的一个必不可少的环节。研究计划一般包括:
1. 课题题目
2. 研究目的
3. 研究方法
这部分主要反映一项课题的研究要“怎样做”。常用的方法有观察法、调查法、实验法、经验总结法等等。
4. 研究程序
研究程序就是研究的实施步骤、时间规划。研究的每一步骤、每一阶段的工作任务和要求,每个阶段需要的工作时间,不仅要胸中有数,还要落实到书面计划中。
5. 人员安排
在研究计划中,将课题研究组负责人、成员名单及分工情况学出,目的是为了增强课题研究组成员的责任感,以利于计划的落实。
6. 成果形式
指论文、调查报告、实验报告、研究报告,或方案设计、成品制作。
7. 经费预算
8. 设备条件

5. 高中数学研究性课题。

邮箱地址?有第七个的表格

6. 求高中数学研究性小课题一篇

高中数学研究性学习课题集锦 一、课本知识延伸型 1、空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的 各类问题。 2、整理求定义域的规则及类型(特别是复合函数的类型) 。 3、求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出 现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如 配方法、带余除法等) 。 4、 总结求函数值域的有关方法, 探索判别式法的一般情形——实根分布的条件用于求值域。 5、利用条件最值的几何背景进行命题演变,与命题分类。 6、回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层 函数的符号) ,我们称之为“给函数更衣” ,于是我们可以随心所欲地将方程(不等式)进行 演变。你能利用这一点编拟一些好题吗。 7、探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这 种方程的类型。 8、在原点有定义的奇函数,其隐含条件是 f(0)=0,试以这一事实编拟、演变命题。 9、把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一 事实数学化吗?若把轴对称改为中心对称又怎么结论? 10、对于含参数的方程(不等式) ,若已知解的情况确定参数的取值范围,我们通常用函数 思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。 11、 改变含参数的方程 (不等式) 的主元与参数的地位进行命题的演变。 探索换主元的功能。 12、数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘, 试探它在解决三角问题中的数形结合功能。 13、整理三角代换的的类型,及其能解决的哪几类问题。 14、一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。 15、三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化, 即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。 16、一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑 其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法” ,试整 理常见的类型的补集法。 17、概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。 18、观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。 19、探求一些着名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深 对不等式的理解。 20、整理常用的一些代换(三角代换、均值代换等) ,探索它在命题转化中的功能。 21、考虑均值不等式的变换,及改变之后的不等式的背景意义。 22、分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换, 将分母为多项式的转化为单项式。 23、关于数学知识在物理上的应用探索 24、对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两 点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题, 试研究解几中的各种公式逆用,以充实构造法证明。 25、我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的 行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。 26、 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材, 如用点斜式而忽视斜 率存在,截距式而忽视截距为零等。 27、 利用角参数与距离参数的相互转化以实现命题的演变, 达到以点带面, 触类旁通的目的。 28、研究求轨迹问题中的坐标转移法与参数法的相互联系。 29、关于斜率为 1 的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题 策略。 30、解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲 线(包括其退化情形如两条相交线,平行线等)的圆化处理。 31、整理与焦半径有关的问题,并将之“纯代数化” ,进而研究其“纯代数解法” ,从中探索 新方法。 32、把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。 33、在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想” , 扩大这思想在解几中的地位或功能。 34、与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种 方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。 35、平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简 单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问 题进行升维处理。即把它转化为立几问世题加以解答。 36、用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中 的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。 37、 作为降维处理的一个例子: 可考虑异面直线距离的几种转化, 如转化为线面距、 点线距、 面面距等。 38、异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观 点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。 39、立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。 于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。 40、等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们 所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的 相应方法探索之。 二、生活应用型(需要学生自己动手去有关部门搜集和整理原始资料) 1、银行存款利息和利税的调查 2、购房贷款决策问题 3、有关房子粉刷的预算 4、关于数学知识在物理上的应用探索 5、投资人寿保险和投资银行的分析比较 6、编程中的优化算法问题 7、余弦定理在日常生活中的应用 8、证券投资中的数学 9、环境规划与数学 10、如何计算一份试卷的难度与区分度 11、中国体育彩票中的数学问题 12、 “开放型题”及其思维对策 13、中国电脑福利彩票中的数学问题 14、城镇/农村饮食构成及优化设计 15、如何安置军事侦察卫星 16、如何存款最合算 17、哪家超市最便宜 18、数学中的黄金分割 29、通讯网络收费调查统计 20、数学中的最优化问题 21、水库的来水量如何计算 22、计算器对运算能力影响 23、统计铜陵市月降水量 24、出租车车费的合理定价 25、购房贷款决策问题 26、设计未来的中学数学课堂 27、电视机荧屏曲线的拟合函数的分析 28、用计算机软件编制数学游戏 29、制作一个数学的练习与检查反馈软件 30、制作较为复杂的数据统计表格与分析软件 31、制作一个中学生数学网站 32、如何计算一份试卷的难度与区分度 33、多媒体辅助教学在数学教学中的作用调查 34、零件供应站(最省问题) 35、拍照取景角最大问题 36、当地耕地而积的变化情况,预测今后的耕地而积 37、衣服的价格、质地、品牌,左右消费者观念多少? 38、如何提高数学课堂效率 39、数学的发展历史 40、“开放型题”及其思维对策

7. 要搞一个有关高中数学的课题

数学研究性学习课题

1、银行存款利息和利税的调查
2、气象学中的数学应用问题
3、如何开发解题智慧
4、多面体欧拉定理的发现
5、购房贷款决策问题
6、有关房子粉刷的预算
7、日常生活中的悖论问题
8、关于数学知识在物理上的应用探索
9、投资人寿保险和投资银行的分析比较
10、黄金数的广泛应用
11、编程中的优化算法问题
12、余弦定理在日常生活中的应用
13、证券投资中的数学
14、环境规划与数学
15、如何计算一份试卷的难度与区分度
16、数学的发展历史
17、以“养老金”问题谈起
18、中国体育彩票中的数学问题
19、“开放型题”及其思维对策
20、解答应用题的思维方法
21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类
22、高中数学的学习活动——解题后的反思——开发解题智慧
23、中国电脑福利彩票中的数学问题
24、各镇中学生生活情况
25、城镇/农村饮食构成及优化设计
26、如何安置军事侦察卫星
27、给人与人的关系(友情)评分
28、丈量成功大厦
29、寻找人的情绪变化规律
30、如何存款最合算
31、哪家超市最便宜
32、数学中的黄金分割
33、通讯网络收费调查统计
34、数学中的最优化问题
35、水库的来水量如何计算
36、计算器对运算能力影响
37、数学灵感的培养
38、如何提高数学课堂效率
39、二次函数图象特点应用
40、统计月降水量
41、如何合理抽税
42、市区车辆构成
43、出租车车费的合理定价
44、衣服的价格、质地、品牌,左右消费者观念多少?
45、购房贷款决策问题
研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪)
《 立几部分 》

问题1
平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。

问题2
用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。

问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。

问题4
异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。

问题5
立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。

问题6
作二面角的平面角是立几中的难点,常用方法有:定义法、三垂线法、垂面法。其实质是以点定位,即当点在二面角的棱上时用定义法、当点在一个半平面内时用三垂线法、当点在空间时时用垂面法。问题似乎已解决。但对于较复杂的图形,由于点的个数较多,以哪个点作为定位点就难以决定。试给出以线定位来作二面角的平面角的方法及步骤。

问题7
等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的相应方法探索之。

问题8 将三垂线定理进行推广与引伸,即所谓三面角的正、余弦定理及其特例直三面角的正、余弦定理。以开阔眼界。

《解几部分 》

问题9
对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题,试研究解几中的各种公式逆用,以充实构造法证明。

问题10
我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。

问题11 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材,如用点斜式而忽视斜率存在,截距式而忽视截距为零等。

问题12 利用角参数与距离参数的相互转化以实现命题的演变,达到以点带面,触类旁通的目的。

问题13 将与中点有关的问题及解决方法进行推广,使之适用于定比分点的相应问题与方法。

问题14 研究求轨迹问题中的坐标转移法与参数法的相互联系。

问题15 关于斜率为 1的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题策略。

问题16
解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲线(包括其退化情形如两条相交线,平行线等)的圆化处理。

问题17 整理与焦半径有关的问题,并将之“纯代数化”,进而研究其“纯代数解法”,从中探索新方法。

问题18 把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。

问题19 求轨迹问题中,纯粹性的简捷判别。

问题20 在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想”,扩大这思想在解几中的地位或功能。

问题21 对平移变换的解题功能进行综述。

问题22
与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。

《函数部分 》

问题23 空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的各类问题。

问题24 整理求定义域的规则及类型(特别是复合函数的类型)。

问题25
求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如配方法、带余除法等)。

问题26 总结求函数值域的有关方法,探索判别式法的一般情形——实根分布的条件用于求值域。

问题27 利用条件最值的几何背景进行命题演变,与命题分类。

问题28
回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层函数的符号),我们称之为“给函数更衣”,于是我们可以随心所欲地将方程(不等式)进行演变。你能利用这一点编拟一些好题吗。

问题29 探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这种方程的类型。

问题30 在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。

问题31 把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一事实数学化吗?若把轴对称改为中心对称又怎么结论?

问题32
对于含参数的方程(不等式),若已知解的情况确定参数的取值范围,我们通常用函数思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。

问题33 改变含参数的方程(不等式)的主元与参数的地位进行命题的演变。探索换主元的功能。

《三角部分 》

问题34 数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘,试探它在解决三角问题中的数形结合功能。

问题35 概括sinx+cosx=a时相应x的取值范围,及问题条件中涉及这一条件时的所隐含的结论。

问题36 整理三角代换的的类型,及其能解决的哪几类问题。

问题37 三角最值的构造证法中,型如 ,可转化成:1)动点(ccosx.asinx)与定点(-d,-b)连线的斜率;2)或先化为
从而转化为动点(cosx.sinx)与定点 连线斜率等,考虑各种构造法的背景的联系,能否以此联系用于解决几何问题。

问题38 一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。

问题39 概括三角恒等式证明中的一次弦式、高次弦式和切式证明的常用方法。

问题40
三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化,即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。

《不等式部分 》

问题41
一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法”,试整理常见的类型的补集法。

问题42 概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。

问题43 观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。

问题44 探求一此着名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深对不等式的理解。

问题45 整理常用的一此代换(三角代换、均值代换等),探索它在命题转化中的功能。

问题46 考虑均值不等式的变用,及改变之后的不等式的背景意义。

问题47 分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换,将分母为多项式的转化为单项式。

问题48 探索绝对值不等式和物理模拟法

如果还有什么相关的课题,请各位同行提出

8. 怎么实施高中的数学探究教育有哪些课题可以选择

探究教育一般都是从特殊到一般,无论是解析几何还是向量,什么都可以选。
比方说立体几何中的四面体就有很多值得探究的,从特殊的正四面体的性质,再看看一般的四面体有没有这种性质或是类似的性质,先自己设想,再自己做,然后再去引导学生。

9. 高中数学课题申报

如果没有关系,可以去中国教育课题网看看
白度一下也许可以找到网址。
抱歉,不记得网站了。

10. 高中数学课题具体有哪些选择有范例吗拜托各位大神

数学研究性学习课题 1、银行存款利息和利税的调查 2、气象学中的数学应用问题 3、如何开发解题智慧 4、多面体欧拉定理的发现 5、购房贷款决策问题 6、有关房子粉刷的预算 7、日常生活中的悖论问题 8、关于数学知识在物理上的应用探索 9、投资人寿保险和投资银行的分析比较 10、黄金数的广泛应用 11、编程中的优化算法问题 12、余弦定理在日常生活中的应用 13、证券投资中的数学 14、环境规划与数学 15、如何计算一份试卷的难度与区分度 16、数学的发展历史 17、以“养老金”问题谈起 18、中国体育彩票中的数学问题 19、“开放型题”及其思维对策 20、解答应用题的思维方法 21、高中数学的学习活动——解题分析 A)从尝试到严谨、B)从一个到一类 22、高中数学的学习活动——解题后的反思——开发解题智慧 23、中国电脑福利彩票中的数学问题 24、各镇中学生生活情况 25、城镇/农村饮食构成及优化设计 26、如何安置军事侦察卫星 27、给人与人的关系(友情)评分 28、丈量成功大厦 29、寻找人的情绪变化规律 30、如何存款最合算 31、哪家超市最便宜 32、数学中的黄金分割 33、通讯网络收费调查统计 34、数学中的最优化问题 35、水库的来水量如何计算 36、计算器对运算能力影响 37、数学灵感的培养 38、如何提高数学课堂效率 39、二次函数图象特点应用 40、统计月降水量 41、如何合理抽税 42、市区车辆构成 43、出租车车费的合理定价 44、衣服的价格、质地、品牌,左右消费者观念多少? 45、购房贷款决策问题 研究性学习的问题与课题 (来自《数学百草园》,作者叶挺彪) 《 立几部分 》 问题1 平几中证点共线、线共点往往较难,通常出现在竞赛中。而立几中的这类问题却是非简单,主要的依据仅仅是平面的基本性质:两个平面的公共点共线。可否将平几问题的这类问题进行升维处理。即把它转化为立几问世题加以解答。 问题2 用运变化的观点对待数学问题,将会发现问题的实质及问题之间的联系,但对于立几中的这方面还显得不够,可以通过整理、收集这方面的材料加以综合研究。 问题3 作为降维处理的一个例子:可考虑异面直线距离的几种转化,如转化为线面距、点线距、面面距等。 问题4 异面直线的距离是:异面直线上两动点的连线中最短的线段长度。所以可以用函数的观点来解决。即建立一个两动点的距离函数,利用求函数的最小值达到目的。 问题5 立几中的许多问题可化归为确定点在平面内的射影位置。如点面距、点线距、体积等。于是确定点在平面内的射影显得非常重要,试给出一种通用方法进行确定。 问题6 作二面角的平面角是立几中的难点,常用方法有:定义法、三垂线法、垂面法。其实质是以点定位,即当点在二面角的棱上时用定义法、当点在一个半平面内时用三垂线法、当点在空间时时用垂面法。问题似乎已解决。但对于较复杂的图形,由于点的个数较多,以哪个点作为定位点就难以决定。试给出以线定位来作二面角的平面角的方法及步骤。 问题7 等积变换在立几中大显上内身手,而非等积变换是它的一般情形,作用更大,却被人们所忽视。利用非等积变换能解决求体积、求距离、证明位置关系等问题。试利用类比平几的相应方法探索之。 问题8 将三垂线定理进行推广与引伸,即所谓三面角的正、余弦定理及其特例直三面角的正、余弦定理。以开阔眼界。 《解几部分 》 问题9 对于数学的公式,我们应当做到三会:即正用、变用和逆用。如解几中有许多公式如两点距离、点到直线距离公式,定比分点、斜率公式等,考虑其逆用,就可得到构造法证题,试研究解几中的各种公式逆用,以充实构造法证明。 问题10 我们对待任何问题(包括解决数学问题)往往用自己的审美意识去审视,以调节自己的行动计划。在解几中探索与搜集以美的启迪思维的题材,加以整理与综合研究。 问题11 整理解几中常常被人忽视和特例而使问题的解决不完整的有素材,如用点斜式而忽视斜率存在,截距式而忽视截距为零等。 问题12 利用角参数与距离参数的相互转化以实现命题的演变,达到以点带面,触类旁通的目的。 问题13 将与中点有关的问题及解决方法进行推广,使之适用于定比分点的相应问题与方法。 问题14 研究求轨迹问题中的坐标转移法与参数法的相互联系。 问题15 关于斜率为 1的特殊直线的对称问题的简捷解法中,概括出适用范围更加广阔的解题策略。 问题16 解决椭圆问题不如圆容易,能否使问题化归,即椭圆问题的圆化处理,进而研究圆锥曲线(包括其退化情形如两条相交线,平行线等)的圆化处理。 问题17 整理与焦半径有关的问题,并将之“纯代数化”,进而研究其“纯代数解法”,从中探索新方法。 问题18 把点差法解中点弦问题进行推广,使之能解决“定比分点弦”问题。 问题19 求轨迹问题中,纯粹性的简捷判别。 问题20 在定比分点公式、弦长公式、点到直线的距离公式的推导过程中隐含着“射影思想”,扩大这思想在解几中的地位或功能。 问题21 对平移变换的解题功能进行综述。 问题22 与中点弦有关的圆锥曲线中的参数范围确定问题,往往需要建立不等式进行求解,各种方法中以点在曲线内部条件为隹。试将这方法推广到定比分点弦的情形。 《函数部分 》 问题23 空集是一切集合的子集,但在解决关集合问题时,常常忽略这一事实。试整理这方面的各类问题。 问题24 整理求定义域的规则及类型(特别是复合函数的类型)。 问题25 求函数的值域、单调区间、最小正周期等有关问题时,往往希望将自变量在一个地方出现,所以变量集中的原则就提供了解题的方向,试研究所有与变量集中原则有关的类型(如配方法、带余除法等)。 问题26 总结求函数值域的有关方法,探索判别式法的一般情形——实根分布的条件用于求值域。 问题27 利用条件最值的几何背景进行命题演变,与命题分类。 问题28 回顾解指数、对数方程(不等式)的化归实质(利用外层函数的单调性去掉两边的外层函数的符号),我们称之为“给函数更衣”,于是我们可以随心所欲地将方程(不等式)进行演变。你能利用这一点编拟一些好题吗。 问题29 探求“反函数是它本身”的所有函数。从而可解决一类含抽象函数的方程,概括所有这种方程的类型。 问题30 在原点有定义的奇函数,其隐含条件是f(0)=0,试以这一事实编拟、演变命题。 问题31 把两面镜子相对而立,若你处于其中,将看到许多肖像位置呈现出周期性,你能把这一事实数学化吗?若把轴对称改为中心对称又怎么结论? 问题32 对于含参数的方程(不等式),若已知解的情况确定参数的取值范围,我们通常用函数思想及数形结合思想进行分离参数,试概括问题的类型,总结分离参数法。 问题33 改变含参数的方程(不等式)的主元与参数的地位进行命题的演变。探索换主元的功能。 《三角部分 》 问题34 数形结合是数学中的重要的思想方法之一,而单位圆中的三角函数线却被人们所遗忘,试探它在解决三角问题中的数形结合功能。 问题35 概括sinx+cosx=a时相应x的取值范围,及问题条件中涉及这一条件时的所隐含的结论。 问题36 整理三角代换的的类型,及其能解决的哪几类问题。 问题37 三角最值的构造证法中,型如 ,可转化成:1)动点(ccosx.asinx)与定点(-d,-b)连线的斜率;2)或先化为 从而转化为动点(cosx.sinx)与定点 连线斜率等,考虑各种构造法的背景的联系,能否以此联系用于解决几何问题。 问题38 一个三角公式不仅能正用,还需会逆用与变用,试将后者整理之。 问题39 概括三角恒等式证明中的一次弦式、高次弦式和切式证明的常用方法。 问题40 三角形的形状判定中,对于含边角混合关系的条件,利用正、余弦定理总有两种转化,即转化为角关系或边关系,探索其中一种对另一种解法的启示功能。 《不等式部分 》 问题41 一个数学命题若从正面入手分类情况较多,运算量较大,甚至无法求解,此时不妨考虑其反面进行求解得解集,然后再取其补集即得原命题的解。我们把它称为“补集法”,试整理常见的类型的补集法。 问题42 概括使用均值不等式求最值问题中的“凑”的技巧 ,及拆项、添项的技巧。 问题43 观察式子的结构特征,如分析式子中的指数、系数等启示证题的的方向。 问题44 探求一此着名不等式(如柯西不等式、排序不等式等)和多种证法,寻找其背景以加深对不等式的理解。 问题45 整理常用的一此代换(三角代换、均值代换等),探索它在命题转化中的功能。 问题46 考虑均值不等式的变用,及改变之后的不等式的背景意义。 问题47 分母为多项式的轮换对称不等式,由于难以参于通分,证明往往较难。探求一种代换,将分母为多项式的转化为单项式。 问题48 探索绝对值不等式和物理模拟法 如果还有什么相关的课题,请各位同行提出。

求采纳

阅读全文

与如何申请高中数学的课题相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:705
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1318
华为手机家人共享如何查看地理位置 浏览:1010
一氧化碳还原氧化铝化学方程式怎么配平 浏览:848
数学c什么意思是什么意思是什么 浏览:1369
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1350
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1023
大学物理实验干什么用的到 浏览:1449
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:832
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1608
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1452
数学中的棱的意思是什么 浏览:1017