导航:首页 > 数字科学 > 数学7大猜想有什么用

数学7大猜想有什么用

发布时间:2023-02-15 10:45:12

⑴ 猜想的数学猜想的意义

数学猜想是以一定的数学事实为根据,包含着以数学事实作为基础的可贵的想象成分;没有数学事实作根据,随心所欲地胡猜乱想得到的命题不能称之为“数学猜想”。数学猜想通常是应用类比、归纳的方法提出的,或者是在灵感中、直觉中闪现出来的。例如,中国数学家和语言学家周海中根据已知的梅森素数及其排列,巧妙地运用联系观察法和不完全归纳法,于1992年正式提出了梅森素数分布的猜想(即周氏猜测)。这一猜想加深了人们对特殊素数性质的认识。
数学猜想一般都是经过对大量事实的观察、验证、类比、归纳、概括等而提出来的。这种从特殊到一般,从个性中发现共性的方法是数学研究的重要动力。数学猜想的提出与研究,生动地体现了辩证法在数学中的应用,极大地推动了数学方法论的研究。此外,数学猜想往往成为数学发展水平的一项重要标志:费马猜想产生了代数数论;庞加莱猜想有助于人们更好地研究三维空间;哥德巴赫猜想促进了筛法和圆法的发展,尤其是发现了殆素数、例外集合、小变量的三素数定理等;黎曼假设使素数定理得到证明以及椭圆曲线技术应用于加解密、数字签名、密钥交换、大数分解和素数判断等;四色问题通过电子计算机得以解决,从而开辟了机器证明的新时代。从这个意义上讲,数学猜想不仅是一颗颗“璀璨艳丽的宝石”,而且是一只只“能生金蛋的母鸡”。

⑵ 世界数学7大猜想都是什么

"千僖难题"之一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。 "千僖难题"之二:霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。 "千僖难题"之三:庞加莱(Poincare)猜想 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是"单连通的",而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。 "千僖难题"之四:黎曼(Riemann)假设 有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。着名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。 "千僖难题"之五:杨-米尔斯(Yang-Mills)存在性和质量缺口 量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于"夸克"的不可见性的解释中应用的"质量缺口"假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。 "千僖难题"之六:纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。 "千僖难题"之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想 数学家总是被诸如x2+y2=z2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,

⑶ 千禧年七大数学猜想是神马

NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD猜想

⑷ 世界数学七大难题是什么

世界数学七大难题:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨.米尔斯存在性和质量缺口、纳卫尔.斯托可方程、BSD猜想。

1、NP完全问题

例:在一个周六的晚上,参加了一个盛大的晚会。由于感到局促不安想知道这一大厅中是否有你已经认识的人。宴会的主人提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟你就能向那里扫视,并且发现宴会的主人是正确的。

如果没有这样的暗示你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。

2、霍奇猜想

二十世纪的数学家们发现了,研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,可以把给定对象的形状通过把维数,不断增加简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广。

最终导致一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是在这一推广中,程序的几何出发点变得模糊起来。在某种意义下必须加上某些没有任何几何解释的部件。

霍奇猜想断言,对于所谓射影代数簇这种特别完好的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

3、庞加莱猜想

如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面如果想象同样的橡皮带,以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。

苹果表面是“单连通的”而轮胎面不是。大约在一百年以前庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起数学家们就在为此奋斗。

4、黎曼假设

有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中这种素数的分布并不遵循任何有规则的模式;然而德国数学家黎曼(1826~1866)观察到。

素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态。着名的黎曼假设断言,方程ζ(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。



5、杨.米尔斯存在性和质量缺口

量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨.米尔斯方程的预言,已经在全世界范围内的实验室中所履行的高能实验中得到证实。

布罗克哈文、斯坦福、欧洲粒子物理研究所和驻波。描述重粒子、又在数学上严格的方程没有已知的解。被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。问题上的进展需要在物理上和数学上两方面引进根本上的新观念。

6、纳卫尔.斯托可方程的存在性与光滑性

起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶.斯托克斯方程的解,来对它们进行解释和预言。

虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶.斯托克斯方程中的奥秘。

7、BSD猜想

数学家总是被诸如x2+y2=z2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上正如马蒂雅谢维奇指出,希尔伯特第十问题是不可解的。

不存在一般的方法来确定这样的方程是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通.戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解)。如果z(1)不等于0,那么只存在着有限多个这样的点。

⑸ 数学的几大猜想

世界三大数学猜想即费马猜想、四色猜想和哥德巴赫猜想。
费马猜想的证明于1994年由英国数学家安德鲁·怀尔斯(Andrew Wiles)完成,遂称费马大定理;
四色猜想的证明于1976年由美国数学家阿佩尔(Kenneth Appel)与哈肯(Wolfgang Haken)借助计算机完成,遂称四色定理;
哥德巴赫猜想尚未解决,最好的成果(陈氏定理)乃于1966年由中国数学家陈景润取得。这三个问题的共同点就是题面简单易懂,内涵深邃无比,影响了一代代的数学家。
费马大定理
内容
当整数n > 2时,关于x,y,z的不定方程 x^n + y^n = z^n 无正整数解。
简介
这个定理,本来又称费马最后的定理,由17世纪法国数学家费马提出,而当时人们称之为"定理",并不是真的相信费马已经证明了它。虽然费马宣称他已找到一个绝妙证明,德国佛尔夫斯克宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的"证明"。在一战之后,马克大幅贬值,该定理的魅力也大大地下降。
但经过三个半世纪的努力,这个世纪数论难题才由普林斯顿大学英国数学家安德鲁·怀尔斯和他的学生理查·泰勒于1994年成功证明。证明利用了很多新的数学,包括代数几何中的椭圆曲线和模形式,以及伽罗华理论和Hecke代数等,令人怀疑费马是否真的找到了正确证明。而安德鲁·怀尔斯(Andrew Wiles)由于成功证明此定理,获得了1998年的菲尔兹奖特别奖以及2005年度邵逸夫奖的数学奖。

阅读全文

与数学7大猜想有什么用相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:705
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1318
华为手机家人共享如何查看地理位置 浏览:1010
一氧化碳还原氧化铝化学方程式怎么配平 浏览:848
数学c什么意思是什么意思是什么 浏览:1369
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1350
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1023
大学物理实验干什么用的到 浏览:1449
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:832
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1608
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1452
数学中的棱的意思是什么 浏览:1017