导航:首页 > 数字科学 > 八年级数学第12章怎么学会证明

八年级数学第12章怎么学会证明

发布时间:2023-02-15 16:51:48

A. 八年级上册数学知识点总结

学习 八年级 数学知识点的来源于勤奋好学,只有好学者,才能在无边的知识海洋里猎取到真智才学,为大家整理了八年级上册数学知识点 总结 人教版,欢迎大家阅读!

八年级上册数学知识点总结人教版第11-12章

第十一章 全等三角形

知识概念

1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质: 全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:

(1)“边角边”简称“SAS”

(2)“角边角”简称“ASA”

(3)“边边边”简称“SSS”

(4)“角角边”简称“AAS”

(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的基本 方法 步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).

在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。通过直观的理解和比较发现全等三角形的奥妙之处。在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。

第十二章 轴对称

知识概念

1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质: (1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

5.等腰三角形的判定:等角对等边。

6.等边三角形角的特点:三个内角相等,等于60°,

7.等边三角形的判定: 三个角都相等的三角形是等腰三角形。

有一个角是60°的等腰三角形是等边三角形

有两个角是60°的三角形是等边三角形。

8.直角三角形中,30°角所对的直角边等于斜边的一半。

9.直角三角形斜边上的中线等于斜边的一半。

本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰三角形、等边三角形等的性质和判定,并利用这些性质来解决一些数学问题。

八年级上册数学知识点总结人教版第13-14章

第十三章 实数

1.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。

2.平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。

3.正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。

4.正数的立方根是正数;0的立方根是0;负数的立方根是负数。

5.数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。重点是实数的意义和实数的分类;实数的运算法则及运算律。

第十四章 一次函数

知识概念

1.一次函数:若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

2.正比例函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。

3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小。

4.已知两点坐标求函数解析式:待定系数法

一次函数是初中学生学习函数的开始,也是今后学习 其它 函数知识的基石。在学习本章内容时,教师应该多从实际问题出发,引出变量,从具体到抽象的认识事物。培养学生良好的变化与对应意识,体会数形结合的思想。在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的实用价值和乐趣。

八年级上册数学知识点总结人教版第15章

第十五章 整式的乘除与分解因式

1.同底数幂的乘法法则: (m,n都是正数)

2.. 幂的乘方法则:(m,n都是正数)

3. 整式的乘法

(1) 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

(2)单项式与多项式相乘:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

(3).多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

4.平方差公式:

5.完全平方公式:

6. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).

在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

②任何不等于0的数的0次幂等于1,即,如,(-2.50=1),则00无意义.

③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的.

④运算要注意运算顺序.

7.整式的除法

单项式除法单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

多项式除以单项式: 多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加.

8.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.

分解因式的一般方法:1. 提公共因式法2. 运用公式法3.十字相乘法

分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式;

(2)再看能否使用公式法;

(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.

整式的乘除与分解因式这章内容知识点较多,表面看来零碎的概念和性质也较多,但实际上是密不可分的整体。在学习本章内容时,应多准备些小组合作与交流活动,培养学生推理能力、计算能力。在做题中体验数学法则、公式的简洁美、和谐美,提高做题效率。

八年级上册数学知识点总结相关 文章 :

1. 人教版八年级数学上册知识点总结

2. 初二数学上册知识点总结

3. 人教版八年级数学上册知识点总结

4. 八年级数学上册知识点归纳

5. 八年级上册数学知识点总结

6. 新人教版八年级数学上册知识点归纳

7. 八年级上册数学知识点总结与八年级数学学习技巧

8. 八年级数学知识点整理归纳

9. 八年级数学知识点总结

10. 2017人教版八年级上册数学知识点总结

B. 做初二数学证明题有什么技巧

1、综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题解决。

2、分析法(执果索因),从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止。

3、分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

(2)八年级数学第12章怎么学会证明扩展阅读:

几何证明作为平面几何中的一个重要问题,它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

C. 初二数学第12章关于角平分线的问题

∵AD是平分线,DE⊥AB,DF⊥AC
∴DE=DF(角平分线上的点到角两边的距离相等)
∵BD=CD
∴RT△BED≌RT△CFD (在直角三角形中根据全等三角形HL定理(一直角边和斜边对应相等,两三角形))
∴∠B=∠C

D. 做初二数学证明题有什么技巧

读题慢一点细一点,把题目中可以开发出来的结论想一遍,然后看哪些有用——这叫综合法
把要证明的内容看清楚,看看需要什么条件,然后逐步去找——这叫分析法
两者结合——叫综合分析法
要有信心+勤劳+不断地积累经验
几何就是这么学的

E. 八年级数学平行线的证明知识点

八年级数学平行线的证明知识点 1

1、平行线的性质

一般地,如果两条线互相平行的直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补.

也可以简单的说成:

两直线平行,同位角相等;

两直线平行,内错角相等;

两直线平行,同旁内角互补。

2、判定平行线

两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.

也可以简单说成:

同位角相等两直线平行 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.

其他两条可以简单说成:

内错角相等两直线平行

同旁内角相等两直线平行

初中数学常见公式

常见的初中数学公式

1.过两点有且只有一条直线

2.两点之间线段最短

3.同角或等角的补角相等

4.同角或等角的余角相等

5.三角形内角和定理 三角形三个内角的和等于180°

6.多边形内角和定理 n边形的内角的和等于(n-2)×180°

7.定理1 关于某条直线对称的两个图形是全等形

初中5种数学提分方法

1.细心地发掘概念和公式

2.总结相似类型的题目

3.收集自己的典型错误和不会的题目

4.就不懂的问题,积极提问、讨论

5.注重实践(考试)经验的培养

初中数学有理数的运算

加法:

①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:

①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:

①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

八年级数学平行线的证明知识点 2

1、为什么要证明

① 实验、观察、归纳得到的结论可能正确,也可能不正确,因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明

2、定义与命题

① 证明时,为了交流方便,必须对某些名称和术语形成共同的`认识,为此,就要对名称和术语的含义加以描述,做出明确的规定,也就是给它们的定义

② 判断一件事情的句子,叫做命题

③ 一般地,每个命题都由条件和结论两部分组成。条件是已知的选项,结论是已知选项推出的事项。命题通常可以写成“如果....那么.....”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论

④ 正确的命题称为真命题,不正确的命题称为假命题

⑤ 要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例

⑥ 欧几里得在编写《原本》时,挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的出发点和依据。其中数学名词称为原名,公认的真命题称为公理,除了公理外,其他命题的真假都需要通过演绎推理的方法进行判断

⑦ 演绎推理的过程称为证明,经过证明的真命题称为定理,每个定理都只能用公理、定义和已经证明为真的命题来证明

a. 本套教科书选用九条基本事实作为证明的出发点和依据,其中八条是:两点确定一条直线

b. 两点之间线段最短

c. 同一平面内,过一点有且只有一条直线与已知直线垂直

d. 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简述为:同位角相等,两直线平行)

e. 过直线外一点有且只有一条直线与这条直线平行

f. 两边及其夹角分别相等的两个三角形全等

g. 两角及其夹边分别相等的两个三角形全等

h. 三边分别相等的两个三角形全等

⑧ 此外,数与式的运算律和运算法则、等式的有关性质,以及反映大小关系的有关性质都可以作为证明的依据

⑨ 定理:同角(等角)的补角相等

同角(等角)的余角相等

三角形的任意两边之和大于第三边

对顶角相等

3、平行线的判定

① 定理:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简述为:内错角相等,两直线平行

② 定理:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简述为:同旁内角互补,两直线平行。

4、平行线的性质

① 定理:两条平行直线被第三条直线所截,同位角相等。简述为:两直线平行,同位角相等

② 定理:两条平行直线被第三条直线所截,内错角相等。简述为:两直线平行,内错角相等

③ 定理:两条平行直线被第三条直线所截,同旁内角互补。简述为:两直线平行,同旁内角互补

④ 定理:平行于同一条直线的两条直线平行

5、三角形内角和定理

① 三角形内角和定理:三角形的内角和等于180°

② 定理:三角形的一个外角等于和它不相邻的两个内角的和

定理:三角形的一个外角大于任何一个和它不相邻的内角

③ 我们通过三角形的内角和定理直接推导出两个新定理。像这样,由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论,推论可以当定理使用。

初中常考数学公式

乘法与因式分:a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

一元二次方程的解:-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

抛物线标准方程:y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积:S=cxh

斜棱柱侧面积:S=c'xh

正棱锥侧面积:S=1/2cxh'

正棱台侧面积:S=1/2(c+c')h'

圆台侧面积:S=1/2(c+c')l=pi(R+r)l

球的表面积:S=4pixr2

圆柱侧面积:S=cxh=2pixh

初中数学线段的性质

(1)线段公理:所有连接两点的线中,线段最短。也可简单说成:两点之间线段最短。

(2)连接两点的线段的长度,叫做这两点的距离。

(3)线段的中点到两端点的距离相等。

(4)线段的大小关系和它们的长度的大小关系是一致的。

八年级数学平行线的证明知识点 3

平行线:在同一平面内,永不相交的两条直线叫平行线(parallel lines),平行线具有传递性。

平行线的判定方法

1.平行线的定义(在同一平面内,不相交的两条直线叫做平行线。)

2.平行公理推论:平行于同一直线的两条直线互相平行。

3.在同一平面内,垂直于同一直线的两条直线互相平行。

4.内错角相等,两直线平行。

5.同旁内角互补,两直线平行。

6.同位角相等,两直线平行

平行线的性质

1.两条平行线被第三条直线所截,同位角相等

2.两条平行线被第三条直线所截,内错角相等

3.两条平行线被第三条直线所截,同旁内角互补

4. 两条平行线被第三条直线所截,外错角相等

以上性质可简单说成:

1.两条直线平行,同位角相等

2.两条直线平行,内错角相等

3.两条直线平行,同旁内角互补

4.两条直线平行,外错角相等

平行公理

1.在同一平面内,经过直线外一点,有且只有一条直线与这条直线平行。

平行公理的推论:(平行传递性)

1.如果两条直线都和第三条直线平行,那么这两条直线也互相平行。即平行于同一条直线的两条直线平行。

2.经过直线外一点,有且只有一条直线与这条直线平行。

F. 人教版八年级上册数学教材分析

人教版八年级上册数学教材分析 范文 一
一、八年级数学(上)主要章节

第11章 全等三角形 第12章 轴对称 第13章 实数

第14章 一次函数 第15章 整式的乘除与 因式分解

第11章和12章为几何内容主要让学生通过动手操作探究全等和对称。第14章 一次函数是难点,抽象应注重建模思想。第15章 整式的乘除与 因式分解非常重要,特别是灵活分解因式。根据去年的 经验 ,本学期有到半程的实践活动,课程显得更紧张,所以前两章较为简单又预习过进度应紧凑些。把重点放在15章难点放在14章。

第11章 全等三角形

在“三角形全等的条件”一节设计了8个探究,让学生经历三角形全等条件的探索过程,突出体现新教材的设计思想。首先让学生探索两个三角形满足三条边对应相等,三个角对应相等这六个条件中的一个或两个,两个三角形是否一定全等。然后让学生探索两个三角形满足上述六个条件中的三个,两个三角形是否一定全等,并按如下的顺序展开:

1)SSS;(2)SAS;3)SSA;(4)ASA;(5)AAS;(6)AAA

总的发展脉络是三边,两边一角(包括(2),(3)两种情况),一边两角(包括(4),(5)两种情况),三个角,这样学生容易把握探索的过程。这样的处理也与先给出可判定全等的情况,再给出不一定能判定全等的情况的处理不同,尽量排除人为安排的因素,呈现更为自然。最后让学生将三角形全等的条件运用于直角三角形,讨论得出直角三角形全等的条件。其中,斜边和一条直角边对应相等不能运用三角形全等的条件,又需要学生进一步加以实验探索。

第12章 轴对称

在“轴对称”一章,与轴对称有关的性质是让学生通过观察、探究得到的。对于关于坐标轴对称的点的坐标的关系,课本是通过让学生画出一些已知点及其对称点,确定对称点的坐标,比较每对对称点的坐标得到的。对于等腰三角形的性质,则是让学生把等腰三角形适当对折,找出其中重合的线段和角,自己去发现有关的结论。

第13章 实数

实数一章内容调整与大纲下的课本相比,本章作了一些调整:(1)加强了实数学习必要性的感受;(2)重视在现实背景中对运算意义的理解和运算的应用;(3)精确运算的要求有所降低,不要求分母有理化;(4)加强了估算;(5)鼓励使用计算器进行有关繁难的计算和近似计算。

第14章 一次函数

“一次函数”在现行教材中与传统教材相比,在课程目标上,注重了知识的探索过程,更加突出了数学的“建模”思想;注重了学生形象性思维能力的培养,提高了学生利用“数形结合”解决问题的能力;注重了“一次函数”的应用,加强了数学与现实生活的联系。

第15章 整式的乘除与因式分解

本章的主要内容是整式的乘除运算、乘法公式以及因式分解。本章内容建立在已经学习了的有理数运算、列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上。整式的乘除运算和因式分解是基本而重要的代数初步知识,这些知识是以后学习分式和根式运算、函数等知识的基础,在后续的数学学习中具有重要意义,

注重公式的趣味性学习和补充十字相乘,为解决一元二次方程的应用题走捷径。

三、八年级数学组本学期努力方向

1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要 方法 ,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。

2、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。

3、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的 发散思维 。

最后祝大家新学期工作愉快!谢谢!
人教版八年级上册数学教材分析范文二
“全等三角形”,本章的主要内容是全等三角形,主要学习全等三角形的性质及各种三角形全等的判定方法,同时学会如何利用全等三角形进行证明。

本章的教学目标是:

1、了解全等三角形的概念和性质,能够 准确地辨认全等三角形中的对应元素。

2、探索三角形全等的判定方法,能利用三角形全等进行证明,掌握 综合 法证明的格式。

3、会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明。

因为学生对于证明过程的书写和推理还比较生疏,这一章书学生学起来应该比较困难,所以确定本章的重难点是要使学生理解证明的基本过程,掌握用综合法证明的格式。

本章在教学中注重探索结论,注重推理能力的培养,注重联系实际。
人教版八年级上册数学教材分析范文三
轴对称,本章的主要内容是从生活中的图形入手,学习轴对称及其性质,欣赏、体验轴对称在现实生活中的广泛应用。在此基础上,利用轴对称,探索等腰三角形的性质,学习它的判定方法,并进一步学习等边三角形。

本章的教学目标是:

1、通过具体实例认识轴对称、轴对称图形,探索轴对称的基本性质,理解对应点连线被对称轴垂直平分的性质。

2、了角线段垂直平分线的概念,探索并掌握其性质;了解等腰三角形、等边三角形的有关概念必、性质及判定方法。

3、能初步应用本章所学的知识解释生活中的现象及解决简单的实际问题。在观察、操作、论证、交流的过程中,发展空间观念,激发学习图形与几何的兴趣。

轴对称的性质是本章的重点,对于一些图形的性质的证明是本章的难点。要克服这个难点,关键是要加强对问题分析的教学,帮助学生分析问题的思路。

因为对称是现实生活中广泛存在的一种现象,所发以教学中注意联系实际,注意让学生经历观察、实验、归纳、论证的过程,注重多媒体的应用。

人教版八年级上册数学教材分析相关 文章 :

1. 人教版八年级上册数学教学计划

2. 八年级数学上册教学大纲

3. 人教版八年级上册数学教学工作计划

4. 2016年八年级上册数学教学计划

5. 八年级上学期数学教学计划

G. 初二数学证明题怎么做啊

证明题,重点就是你把逻辑关系弄清楚没有,这是解题的关键。有时候做题想很久都没有做出来,但是别人一点拨就知道怎么做了,做不出来就是因为没有把逻辑关系弄懂。我个人认为做证明题要多做,做多了你就会有一种条件反射,比如给你一个条件内错角相等,你迅速就可以得出结论两直线平行,做的题目多类型也应该要多,这样你才可以掌握其中的某些思想,比如做辅助线之类的。还有就是你要把书上的定理啊,公式啊记清楚,看看它们有哪些联系,这可是做题的法宝。做题的时候把已知得到的结论写下来(等训练多了,你就可以记在脑子里了)然后把得到的结论当新的条件,你要注意看问的是什么比如求AB=DC你就要想要使AB=DC就应该满足什么条件,比如这个角必须等于那个角。把已知结论问连在一起想,你就会发现它们都是紧密联系的,这样题目就会迎刃而解,而且你还会发现很有意思。希望您可以学会,学好,会应用证明。
自己打的

H. 初中数学几何证明题技巧

几何证明题入门难,证明题难做,是许多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。

一要审题。很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。

二要记。这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。

三要引申。难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。

四要分析综合法。分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换成证明其他的结论,通常缺少的条件会在第三步引申出的条件和题目中出现,这时再把这些条件综合在一起,很条理的写出证明过程。

五要归纳总结。很多同学把一个题做出来,长长的松了一口气,接下来去做其他的,这个也是不可取的,应该花上几分钟的时间,回过头来找找所用的定理、公理、定义,重新审视这个题,总结这个题的解题思路,往后出现同样类型的题该怎样入手。

以上是常见证明题的解题思路,当然有一些的题设计的很巧妙,往往需要我们在填加辅助线,
分析已知、求证与图形,探索证明的思路。
对于证明题,有三种思考方式:
(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。
(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。
(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。
下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。
一、证明两线段相等
1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
二、证明两个角相等
1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等。
三、证明两条直线互相垂直
1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
5.一条直线垂直于平行线中的一条,则必垂直于另一条。
6.两条直线相交成直角则两直线垂直。
7.利用到一线段两端的距离相等的点在线段的垂直平分线上。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
10.在圆中平分弦(或弧)的直径垂直于弦。
11.利用半圆上的圆周角是直角。
四、证明两直线平行
1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
6.平行于同一直线的两直线平行。
7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。
五、证明线段的和差倍分
1.作两条线段的和,证明与第三条线段相等。
2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。
3.延长短线段为其二倍,再证明它与较长的线段相等。
4.取长线段的中点,再证其一半等于短线段。
5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。
六、证明 角的和差倍分
1.与证明线段的和、差、倍、分思路相同。
2.利用角平分线的定义。
3.三角形的一个外角等于和它不相邻的两个内角的和。

I. 八年级数学人教版 全等三角形的证明过程不会写 怎么办

证明有四种方法:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS),还有一种是HL,这种方法仅限于直角三角形。
如果就是简单的证明题,那你就看看题目里给了什么条件,根据五种证明方法看看缺了什么条件,根据现有的条件,把它求出来,然后证明。
在△ABC与△DEF中
∵AB=DE
BC=EF
CA=FD
∴△ABC≌△DEF(SSS)这个你就根据具体的证明方法写就行了。
如果图形比较复杂,你就看看哪两个比较相近,或者自己构造全等三角形。
希望能帮到你 看在我打了这么多字的份上,采纳吧!!

阅读全文

与八年级数学第12章怎么学会证明相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:705
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1318
华为手机家人共享如何查看地理位置 浏览:1010
一氧化碳还原氧化铝化学方程式怎么配平 浏览:848
数学c什么意思是什么意思是什么 浏览:1369
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1350
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1023
大学物理实验干什么用的到 浏览:1449
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:832
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1608
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1452
数学中的棱的意思是什么 浏览:1017