导航:首页 > 数字科学 > 数学金融应用模型有哪些内容

数学金融应用模型有哪些内容

发布时间:2023-02-15 16:55:55

㈠ 在大学学的数学,有哪些是在金融里可以真正运用到的

全都用得上。
概率,不用讲了,超级重要的。高峰厚尾的类正态分布,直接对应你要计算的投资回报率。这必须好好学。
线性代数、离散数学、拓扑等,在金融建模中会有用到。
高数(微积分)、复变函数等,会应用在衍生品定价的反演评估上。

金融学的教授为什么最喜欢收的就是数学系毕业生,帮忙干活最顺手啊。

㈡ 在经济学或金融学中有哪些重要的数学模型

IS—LM模型:
IS—LM模型是反映产品市场和货币市场同时均衡条件下,国民收入和利率关系的模型。
按照希克斯的观点,流动偏好(L)和货币数量(M)决定着货币市场的均衡,而人们持有的货币数量既决定于利率(i),又决定于收入(y)的水平。

总需求—总供给模型:

总需求—总供给模型(AD--AS模型)是指将总需求与总供给结合在一起放在一个坐标图上,用以解释国民收入和价格水平的决定,考察价格变化的原因以及社会经济如何实现总需求与总供给的均衡。
望采纳,谢谢

㈢ 金融经济学中的数学模型包括哪些详解!

金融数学的核心是金融衍生物的定价理论,无论从经济学还是数学都涉及较深的内容;期权定价模型:Black�Seholes�Merton理论---这是所有金融数学理论的核心 金融数学,又称数理金融学等,是利用数学工具研究金融现象,通过数学模型进行定量分析,以求找到金融活动中潜在的规律,并用以指导实践。金融数学是现代数学与计算机技术在金融领域中的结合应用。目前,金融数学发展很快,是目前十分活跃的前言学科之一。金融数学的发展曾两次引发了“华尔街革命”。上个世纪50年代初期,马克维茨提出证券投资组合理论,第一次明确地用数学工具给出了在一定风险水平下按不同比例投资多种证券,收益可能最大的投资方法,引发了第一次“华尔街革命”。 马克维茨也因此获得了1990年诺贝尔经济...

㈣ 金融数学中哪些出了BS模型,还有什么是应用到随机过程的

black-scholes考虑了期权的时间价值。

  1. bs公式的原推导过程应用了偏微分方程和随机过程中的几何布朗运动性质(描述标的资产)和Ito公式,你要没学过随机和偏微估计只有火星人才能给你讲懂。

  2. 2.你要是只是要得到那个形式,看一下二叉树模型,二叉树模型简单易懂,自己就可以推导,且二叉树模型取极限(时间划分无限细)即为bs公式.

  3. 3.你要是真心要理解bs模型公式,我可以一本书,姜礼尚的《期权定价的数学模型和方法》,老老实实从第一章看到第五章,只挑欧式期权看就够了。

  4. ~~~突然想当年老娘为了看懂b-s-m模型把图书馆的书都借了一圈~感慨啊,当然HULL的那本option,future,and other derivatives 是经典中的经典,不过太厚了~~

㈤ 在经济学或金融学中有哪些重要的数学模型

金融数学的核心是金融衍生物的定价理论,无论从经济学还是数学都涉及较深的内容;期权定价模型:Black?Seholes?Merton理论---这是所有金融数学理论的核心 金融数学,又称数理金融学等,是利用数学工具研究金融现象,通过数学模型进行定量分析,以求找到金融活动中潜在的规律,并用以指导实践.金融数学是现代数学与计算机技术在金融领域中的结合应用.目前,金融数学发展很快,是目前十分活跃的前言学科之一.金融数学的发展曾两次引发了“华尔街革命”.上个世纪50年代初期,马克维茨提出证券投资组合理论,第一次明确地用数学工具给出了在一定风险水平下按不同比例投资多种证券,收益可能最大的投资方法,引发了第一次“华尔街革命”.马克维茨也因此获得了1990年诺贝尔经济...

㈥ 在经济学或金融学中有哪些重要的数学模型

数学在金融学领域最初始的应用却是在计量方面的应用。相关模型AR,MA,ARMA,ARIMA,ARCH, GARCH,EGARCH, TGARCH....这些都是在统计学方面的应用。只有在数据收集完成,以及建立了正确的模型后,分析才有意义。

㈦ 数学模型在金融中有哪些应用

自动控制方面,都是把一个复杂的系统转化为方程来进行研究 经济金融方面都是转化为数理统计模型来研究 等等

㈧ 什么是金融模型

金融模型就是跟据所收集的数据利用回归分析做出一个影响所分析数据的公式,根据公式将数据带入可以进行预测,在股市上的应用就是可以预测股市价格,在这方面比较好的软件是SARS。通俗的讲金融模型是在金融领域中,可以用来作为模型的产品,与金融产品的区别是:金融模型是虚拟的,金融产品是实质的。

(8)数学金融应用模型有哪些内容扩展阅读:
有关金融建模的书籍:
《金融建模:使用Excel和VBA》阐释金融学的一些主要模型以及使用excel和vba构建这些模型的方法。这些模型涉及固定收益证券、组合投资管理、资产定价和风险管理等多个领域。通过《金融建模:使用Excel和VBA》的学习,读者不仅可以得到一些主要金融模型的知识,还可学到在金融领域应用excel和vba的技术,从而大大提高未来的或当前的职场竞争力。《金融建模:使用Excel和VBA》适用于高年级本科生、研究生、mba学员和金融从业人员。

行为金融模型有哪些
行为金融学有五大经典模型:DSSW模型、BSV模型、DHS模型、HS模型、BHS模型,具体为:
DSSW模型:Delong,Shleifer,Summers和Waldmann(1990)提出噪声交易的基本模型,简称DSSW模型,他们认为,当理性套利者进行套利时,不仅要面对基础性变动的风险还要面对“噪声交易者”非理性预期变动的风险。该模型证明了非理性交易者不仅能够在理性交易者的博弈中生存下来,而且,由于噪声交易者制造了更大的市场风险,他们还将有可能获得比理性投资者更高的风险溢价。
BSV模型:Barberis,Shleifer和Vishny(1998)提出,他们假定投资者决策时存在两种偏差,其一是代表性偏差,其二是保守性偏差。代表性偏差会造成投资者对信息的反应过度,保守性偏差会造成投资者对新信息的反应不充分,导致反应不足。
DHS模型:Daniel.Hirshleifer和Suhramanyam(1998)提出,他们把投资者划分为有信息的投资者和无信息的投资者,而有信息的投资者存在两种偏差,一是过度自信,二是自我归因偏差。投资者通常过高的估计了自身的预测能力,低估了自己的预测误差;过分相信私人信息,低估公开信息的价值。
HS模型:Hong 和Stein(1999)年提出。该模型假定市场由两种有限理性投资者组成:“信息挖掘者”和“惯性交易者”。两种有限理性投资者都只能“处理”所有公开信息中的一个子集。信息挖掘者基于他们私自观测到的关于未来基本情况的信息来做出预测,他们的局限性是不能根据当前和过去价格的信息进行预测。惯性交易者正好相反,他们可以根据价格变化做出预测,但是他们的预测是过去价格的简单函数。HS模型将中期的反应不足和长期的价格反应过度统一起来,一次又称为统一理论模型。
BHS模型:Barberis Nicholas,Ming Huang,and Tano Santos(2001) 提出,该模型是基于均值市场的假设而建立。和前面的三个模型不同,BHS模型没有将有偏的预期引入到模型中,而是从资产定价的另一方面,即投资者的风险态度的角度来考虑问题。在传统的基于消费的定价模型中,作者引入前景理论所揭示的“损失厌恶”现象和另一个关于偏好的“私房钱效应”,产生了一个随前期收益状况而变化的风险厌恶,价格升高后投资者风险厌恶程度降低,价格将被进一步推高。价格降低后投资者风险厌恶程度升高,价格将进一步打压。这个模型可以解释市场方面的三个偏差现象:过度波动现象,股权溢价之谜,收益可预测性。

㈨ 金融数学会涉及到哪些方面

金融数学是一门新兴学科,是“金融高技术 ”的重要组成部分。研究目标是利用我国数学界某些方面的优势,围绕金融市场的均衡与有价证券定价的数学理论进行深入剖析,建立适合国情的数学模型,编写一定的计算机软件,对理论研究结果进行仿真计算,对实际数据进行计量经济分析研究,为实际金融部门提供较深入的技术分析咨询。核心内容就是研究不确定随机环境下的投资组合的最优选择理论和资产的定价理论。套利、最优与均衡是金融数学的基本经济思想和三大基本概念。
金融数学主要的研究内容和拟重点解决的问题包括:
(1)有价证券和证券组合的定价理论
发展有价证券(尤其是期货、期权等衍生工具)的定价理论。所用的数学方法主要是提出合适的随机微分方程或随机差分方程模型,形成相应的倒向方程。建立相应的非线性Feynman一Kac公式,由此导出非常一般的推广的Black一Scholes定价公式。所得到的倒向方程将是高维非线性带约束的奇异方程。
研究具有不同期限和收益率的证券组合的定价问题。需要建立定价与优化相结合的数学模型,在数学工具的研究方面,可能需要随机规划、模糊规划和优化算法研究。
在市场是不完全的条件下,引进与偏好有关的定价理论。
(2)不完全市场经济均衡理论(GEI)
拟在以下几个方面进行研究:
1.无穷维空间、无穷水平空间、及无限状态
2.随机经济、无套利均衡、经济结构参数变异、非线资产结构
3.资产证券的创新(Innovation)与设计(Design)
4.具有摩擦(Friction)的经济
5.企业行为与生产、破产与坏债
6.证券市场博弈。
(3)GEI 平板衡算法、蒙特卡罗法在经济平衡点计算中的应用, GEI的理论在金融财政经济宏观经济调控中的应用,不完全市场条件下,持续发展理论框架下研究自然资源资产定价与自然资源的持续利用。
1.什么是关联规则
在描述有关关联规则的一些细节之前,我们先来看一个有趣的故事:"尿布与啤酒"的故事。
在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售。但是这个奇怪的举措却使尿布和啤酒的销量双双增加了。这不是一个笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为商家所津津乐道。沃尔玛拥有世界上最大的数据仓库系统,为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。沃尔玛数据仓库里集中了其各门店的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用数据挖掘方法对这些数据进行分析和挖掘。一个意外的发现是:"跟尿布一起购买最多的商品竟是啤酒!经过大量实际调查和分析,揭示了一个隐藏在"尿布与啤酒"背后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。按常规思维,尿布与啤酒风马牛不相及,若不是借助数据挖掘技术对大量交易数据进行挖掘分析,沃尔玛是不可能发现数据内在这一有价值的规律的。
数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之间存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。关联规则挖掘发现大量数据中项集之间有趣的关联或相关联系。Agrawal等于1993年首先提出了挖掘顾客交易数据库中项集间的关联规则问题,以后诸多的研究人员对关联规则的挖掘问题进行了大量的研究。他们的工作包括对原有的算法进行优化,如引入随机采样、并行的思想等,以提高算法挖掘规则的效率;对关联规则的应用进行推广。关联规则挖掘在数据挖掘中是一个重要的课题,最近几年已被业界所广泛研究。
2.关联规则挖掘过程、分类及其相关算法
2.1关联规则挖掘的过程
关联规则挖掘过程主要包含两个阶段:第一阶段必须先从资料集合中找出所有的高频项目组(FrequentItemsets),第二阶段再由这些高频项目组中产生关联规则(AssociationRules)。
关联规则挖掘的第一阶段必须从原始资料集合中,找出所有高频项目组(LargeItemsets)。高频的意思是指某一项目组出现的频率相对于所有记录而言,必须达到某一水平。一项目组出现的频率称为支持度(Support),以一个包含A与B两个项目的2-itemset为例,我们可以经由公式(1)求得包含{A,B}项目组的支持度,若支持度大于等于所设定的最小支持度(MinimumSupport)门槛值时,则{A,B}称为高频项目组。一个满足最小支持度的k-itemset,则称为高频k-项目组(Frequentk-itemset),一般表示为Largek或Frequentk。算法并从Largek的项目组中再产生Largek+1,直到无法再找到更长的高频项目组为止。
关联规则挖掘的第二阶段是要产生关联规则(AssociationRules)。从高频项目组产生关联规则,是利用前一步骤的高频k-项目组来产生规则,在最小信赖度(MinimumConfidence)的条件门槛下,若一规则所求得的信赖度满足最小信赖度,称此规则为关联规则。例如:经由高频k-项目组{A,B}所产生的规则AB,其信赖度可经由公式(2)求得,若信赖度大于等于最小信赖度,则称AB为关联规则。
就沃尔马案例而言,使用关联规则挖掘技术,对交易资料库中的纪录进行资料挖掘,首先必须要设定最小支持度与最小信赖度两个门槛值,在此假设最小支持度min_support=5%且最小信赖度min_confidence=70%。因此符合此该超市需求的关联规则将必须同时满足以上两个条件。若经过挖掘过程所找到的关联规则“尿布,啤酒”,满足下列条件,将可接受“尿布,啤酒”的关联规则。用公式可以描述Support(尿布,啤酒)>=5%且Confidence(尿布,啤酒)>=70%。其中,Support(尿布,啤酒)>=5%于此应用范例中的意义为:在所有的交易纪录资料中,至少有5%的交易呈现尿布与啤酒这两项商品被同时购买的交易行为。Confidence(尿布,啤酒)>=70%于此应用范例中的意义为:在所有包含尿布的交易纪录资料中,至少有70%的交易会同时购买啤酒。因此,今后若有某消费者出现购买尿布的行为,超市将可推荐该消费者同时购买啤酒。这个商品推荐的行为则是根据“尿布,啤酒”关联规则,因为就该超市过去的交易纪录而言,支持了“大部份购买尿布的交易,会同时购买啤酒”的消费行为。
从上面的介绍还可以看出,关联规则挖掘通常比较适用与记录中的指标取离散值的情况。如果原始数据库中的指标值是取连续的数据,则在关联规则挖掘之前应该进行适当的数据离散化(实际上就是将某个区间的值对应于某个值),数据的离散化是数据挖掘前的重要环节,离散化的过程是否合理将直接影响关联规则的挖掘结果。
2.2关联规则的分类
按照不同情况,关联规则可以进行分类如下:
1.基于规则中处理的变量的类别,关联规则可以分为布尔型和数值型。
布尔型关联规则处理的值都是离散的、种类化的,它显示了这些变量之间的关系;而数值型关联规则可以和多维关联或多层关联规则结合起来,对数值型字段进行处理,将其进行动态的分割,或者直接对原始的数据进行处理,当然数值型关联规则中也可以包含种类变量。例如:性别=“女”=>职业=“秘书”,是布尔型关联规则;性别=“女”=>avg(收入)=2300,涉及的收入是数值类型,所以是一个数值型关联规则。
2.基于规则中数据的抽象层次,可以分为单层关联规则和多层关联规则。
在单层的关联规则中,所有的变量都没有考虑到现实的数据是具有多个不同的层次的;而在多层的关联规则中,对数据的多层性已经进行了充分的考虑。例如:IBM台式机=>Sony打印机,是一个细节数据上的单层关联规则;台式机=>Sony打印机,是一个较高层次和细节层次之间的多层关联规则。
3.基于规则中涉及到的数据的维数,关联规则可以分为单维的和多维的。
在单维的关联规则中,我们只涉及到数据的一个维,如用户购买的物品;而在多维的关联规则中,要处理的数据将会涉及多个维。换成另一句话,单维关联规则是处理单个属性中的一些关系;多维关联规则是处理各个属性之间的某些关系。例如:啤酒=>尿布,这条规则只涉及到用户的购买的物品;性别=“女”=>职业=“秘书”,这条规则就涉及到两个字段的信息,是两个维上的一条关联规则。 Apriori算法
2.3关联规则挖掘的相关算法
1.Apriori算法:使用候选项集找频繁项集
Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。
该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。然后使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。为了生成所有频集,使用了递推的方法。
可能产生大量的候选集,以及可能需要重复扫描数据库,是Apriori算法的两大缺点。
2.基于划分的算法:Savasere等设计了一个基于划分的算法。这个算法先把数据库从逻辑上分成几个互不相交的块,每次单独考虑一个分块并对它生成所有的频集,然后把产生的频集合并,用来生成所有可能的频集,最后计算这些项集的支持度。这里分块的大小选择要使得每个分块可以被放入主存,每个阶段只需被扫描一次。而算法的正确性是由每一个可能的频集至少在某一个分块中是频集保证的。该算法是可以高度并行的,可以把每一分块分别分配给某一个处理器生成频集。产生频集的每一个循环结束后,处理器之间进行通信来产生全局的候选k-项集。通常这里的通信过程是算法执行时间的主要瓶颈;而另一方面,每个独立的处理器生成频集的时间也是一个瓶颈。
3.FP-树频集算法:针对Apriori算法的固有缺陷,J.Han等提出了不产生候选挖掘频繁项集的方法:FP-树频集算法。采用分而治之的策略,在经过第一遍扫描之后,把数据库中的频集压缩进一棵频繁模式树(FP-tree),同时依然保留其中的关联信息,随后再将FP-tree分化成一些条件库,每个库和一个长度为1的频集相关,然后再对这些条件库分别进行挖掘。当原始数据量很大的时候,也可以结合划分的方法,使得一个FP-tree可以放入主存中。实验表明,FP-growth对不同长度的规则都有很好的适应性,同时在效率上较之Apriori算法有巨大的提高。
3.该领域在国内外的应用
3.1关联规则发掘技术在国内外的应用
就目前而言,关联规则挖掘技术已经被广泛应用在西方金融行业企业中,它可以成功预测银行客户需求。一旦获得了这些信息,银行就可以改善自身营销。现在银行天天都在开发新的沟通客户的方法。各银行在自己的ATM机上就捆绑了顾客可能感兴趣的本行产品信息,供使用本行ATM机的用户了解。如果数据库中显示,某个高信用限额的客户更换了地址,这个客户很有可能新近购买了一栋更大的住宅,因此会有可能需要更高信用限额,更高端的新信用卡,或者需要一个住房改善贷款,这些产品都可以通过信用卡账单邮寄给客户。当客户打电话咨询的时候,数据库可以有力地帮助电话销售代表。销售代表的电脑屏幕上可以显示出客户的特点,同时也可以显示出顾客会对什么产品感兴趣。
同时,一些知名的电子商务站点也从强大的关联规则挖掘中的受益。这些电子购物网站使用关联规则中规则进行挖掘,然后设置用户有意要一起购买的捆绑包。也有一些购物网站使用它们设置相应的交叉销售,也就是购买某种商品的顾客会看到相关的另外一种商品的广告。
但是目前在我国,“数据海量,信息缺乏”是商业银行在数据大集中之后普遍所面对的尴尬。目前金融业实施的大多数数据库只能实现数据的录入、查询、统计等较低层次的功能,却无法发现数据中存在的各种有用的信息,譬如对这些数据进行分析,发现其数据模式及特征,然后可能发现某个客户、消费群体或组织的金融和商业兴趣,并可观察金融市场的变化趋势。可以说,关联规则挖掘的技术在我国的研究与应用并不是很广泛深入。
3.2近年来关联规则发掘技术的一些研究
由于许多应用问题往往比超市购买问题更复杂,大量研究从不同的角度对关联规则做了扩展,将更多的因素集成到关联规则挖掘方法之中,以此丰富关联规则的应用领域,拓宽支持管理决策的范围。如考虑属性之间的类别层次关系,时态关系,多表挖掘等。近年来围绕关联规则的研究主要集中于两个方面,即扩展经典关联规则能够解决问题的范围,改善经典关联规则挖掘算法效率和规则兴趣性。

阅读全文

与数学金融应用模型有哪些内容相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:736
乙酸乙酯化学式怎么算 浏览:1400
沈阳初中的数学是什么版本的 浏览:1346
华为手机家人共享如何查看地理位置 浏览:1038
一氧化碳还原氧化铝化学方程式怎么配平 浏览:880
数学c什么意思是什么意思是什么 浏览:1404
中考初中地理如何补 浏览:1294
360浏览器历史在哪里下载迅雷下载 浏览:697
数学奥数卡怎么办 浏览:1383
如何回答地理是什么 浏览:1018
win7如何删除电脑文件浏览历史 浏览:1050
大学物理实验干什么用的到 浏览:1480
二年级上册数学框框怎么填 浏览:1695
西安瑞禧生物科技有限公司怎么样 浏览:958
武大的分析化学怎么样 浏览:1243
ige电化学发光偏高怎么办 浏览:1333
学而思初中英语和语文怎么样 浏览:1646
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1481
数学中的棱的意思是什么 浏览:1053