❶ 小学数学核心素养有哪些
小学数学学科核心素养包含如下:
1、数感
关于数与数量、数量关系、 运算结果估计等方面的感悟。建立数感有助于学生理解现实生活中数的意义, 理解或表述具体情境中的数量关系。
2、符号意识
能够理解并且运用符号表示数、数量关系和变化规律; 知道使用符号可以进行运算和推理,得到的结论具有一般性。 建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。
3、空间观念
根据物体特征抽象出几何图形, 根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系; 描述图形的运动和变化;依据语言的描述画出图形等。
4、几何直观 利用图形描述分析问题。
借助几何直观可以把复杂的数学问题变得简 明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。
5、数据分析观念
了解现实生活中许多问题应先做调查研究,收集数据,通过分析做出 判断,体会数据中蕴涵着信息。
了解对于同样的数据可以有多种分析方法,需要根据问题背景选择合适的方法; 通过数据分析体验随机性。数据分析是统计的核心。
6、运算能力
能够根据法则和运算律正确地进行运算的能力。 培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。
7、推理能力
推理能力的发展应贯穿在整个数学学习过程中。 推理是数学的基本思维方式,也是学习和生活中经常使用的思维方式。
推理一般包括合情推理和演绎推理。在解决问题的过程中, 两者功能不同,相辅相成。合情推理用于探索思路,发现结论; 演绎推理用于证明结论。
8、模型思想
模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。 建立和求解模型的过程包括:问题抽象,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律, 求出结果并讨论意义。这些内容的学习有助于学生初步形成模型思想, 提高学习数学的兴趣和应用意识。
(1)小学生数学素养有哪些扩展阅读
数学核心素养的特点:
1、 在讨论问题时,习惯于强调定义(界定概念),强调问题存在的条件;
2、 在观察问题时,习惯于抓住其中的(函数)关系,在微观(局部)认识基础上进一步做出多因素的全局性(全空间)考虑;
3、 在认识问题时,习惯于将已有的严格的数学概念如对偶、相关、随机、泛涵、非线性、周期性、混沌等等概念广义化,用于认识现实中的问题。比如可以看出价格是商品的对偶,效益是公司的泛涵等等。
提高小学数学核心素养的方法:
1.在教材的使用上,主动挖掘教材,创新使用教材
几年前,我在一年级使用新教材时,发现新教材除了有很多的优点外,也有一些不足。于是,教学中,自己重新组合一些内容和顺序、拓展教材。
比如,在二年级上期开学时,孩子们还处在假期的状态中,因此就把折飞机的教学内容提到开始来上,孩子们很有兴趣,积极主动地完成了这个单元的学习。
又比如,在二年级下期的教学中,对“解决问题”的教学中,教材没有很明显地讲到脱式计算的方法和格式,而在很多的练习中又出现了这方面的练习,所以特别加强这方面教学的练习内容。
孩子们在情景当中学习,很快就掌握了。还有对“两位数加减两位数”的计算法则,让孩子们自己发现、总结,最后归纳,完善了知识,形成一定的系统。
2.教学过程中,创设情景,不脱离实际
在新教材的几年使用中,大量地创设情景,丰富孩子们的视角,调动孩子们的积极性,很有效果。低年级的孩子,注意力集中的时间短,而且生活经验缺少,通过情景的呈现,马上集中他们的注意力,同时调动以往的生活经验,促进对知识的理解。
孩子们对知识不陌生,又有了经验,也就克服了理解的困难。尤其现在多媒体的教学,是低年级课堂创设情景的主要途径。生动形象,一目了然。
在二年级的“旋转和平移”的教学中,效果非常好。正确合理地使用这些教学方式,体现课堂教学的和谐。
3.教学过程中,适时的教和主动的学
在“课标”中指出,教师是课堂的组织者和倡导者,学生才是真正学习的主人。如何让学生主动学习,这都取决于教师的教学态度与决策。
所以,“和谐”正是“此地无声胜有声”。教师的备课是知识生成的一种预报,在课堂中知识的生成是思维的一种更高境界。教师的引导,要适时恰到好处;学生的探索中,要给足够的时间和空间。
❷ 小学数学核心素养包括哪些
小学数学学科核心素养包含如下:
1、数感
关于数与数量、数量关系、运算结果估计等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。
2、符号意识
能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性。建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。
3、空间观念
根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。
4、几何直观利用图形描述分析问题。
借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。
5、数据分析观念
了解现实生活中许多问题应先做调查研究,收集数据,通过分析做出判断,体会数据中蕴涵着信息。
❸ 小学数学素养包括哪些
1、培养数学意识,形成良好数感。
数学意识的培养有利于数学思维的发展,良好数感则有利于形成科学的直觉。个人的数学意识和数感一方面反映了他的数学态度,另一方面也反映了他的数学素养水平。
2、加强数学思维、方法的训练,形成学生数学探究能力。
数学探究能力是数学素养最核心的成份和最本质的特征,数学探究能力的提高是通过数学思维方法的训练来完成的。
3、培养估算能力,形成科学的直觉。
估算是对事物的整体把握,是对事物数量的直觉判断。在现实生活中一个人的估算能力有着广泛的作用。如果我们在小学数学教学中,注重培养学生的估算意识,积极发展学生的估算能力,这将有助于学生对数学概念的理解,有助于数学方法在实际生活中的运用,有助于学生对日常数量关系的灵活处理。
4、注重数学实践活动的开展。
数学实践活动的开展,对于学生能力的培养是十分有益的。教师要想培养学生实际的本领,必须带领学生参与丰富多彩的数学实践活动,使学生在实践中长知识、长才干,学会识别、学会适应生活中的数学问题。
(3)小学生数学素养有哪些扩展阅读:
面对学科核心素养,基于课程功能与价值的以社会为中心、以学生为中心和以学科为中心的主题教学探索;基于学科内容整合的“单学科—主题”“多学科—主题”和“跨学科—主题”的主题教学探索,等等,给我们“仿佛若有光”的期待。
我们愿意将主题教学视为情境教学。但如果按照“真正进入到真实情境”的复杂情境的要求,也许其路漫漫。学科核心素养与复杂情境的挑战,何止是教学环节,包括政府的“管”、学校的“办”、教师的“教”、学生的“学”,以及专业机构的“评”和社区社会的“议”各个方面。
借用也是沿用怀德海的话说:“这是教育的金科玉律,也是一条很难遵守的规律。”
❹ 小学数学学科核心素养有哪些关键词
自新课改以来,我们一线老师的教育理念已逐步更新,课堂上更注重于培养学生的学习能力,近年来,对于小学数学核心素养也纷纷进行探究,何为小学数学核心素养?它是怎样界定的?我们在研究过程中发现它里面的几大要素与我们的课程目标有着千丝万缕的关系,因此,我们尝试着探究数学核心素养的关键因素是什么?它的支撑点在哪里?这种探究对于课堂教学有何价值?如果这种探究有用,这将为我们今后的教学提供了正确的方向。
一、对核心素养的初步解读
《义务教育数学课程标准(2011年版)》明确提出了10个核心素养,即数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识,它们是思想、方法或者关于数学的整体理解与把握,是学生数学素养的表现。由此看来,数学核心素养的涵义十分明确,其外延很广泛。其实我们在平常的教学中也注重培养学生的这些素养,只不过我们并没有认真去总结或思考其中的关联,在教研活动中我们也经常运用到这些素质来评价老师的一节课是否有效,我们课程目标的达成与否跟数学核心素养的培养也是紧密相连的。
(一)我们可以这样理解小学数学核心素养
据以上新课标提出的十个核心要素,我们可以这样理解小学数学核心素养的含义,它既是数学知识、能力的结合体,也
❺ 小学生的基本数学素养包括哪些
小学生的数学素养包括数感、符号意识、空间观念、统计观念、数学应用意识五种数学意识,数学思维、数学理解、数学交流、解决问题四种数学能力以及数学价值观的发展。
数学素养是一种综合素质,它主要表现在观念、能力、语言、思维、心理等方面。包括数学意识、解决问题、数学推理、信息交流、数学心理素质五个部分。
拓展资料:
何谓数学素养?数学素养是学生以先天遗传因素为基体,在从事数学学习与应用活动的过程中,通过主体自身的不断认识和实践的影响下,使数学文化知识和数学能力在主体发展中内化,逐渐形成和发展起来的“数学化”思维意识与“数学化”地观察世界、处理和解决问题的能力。
通俗说,一个人的数学素养好,与说一个人有数学头脑的意思差不多,归根到底是指他从数学的角度来思考问题。一个具备数学素养的人,不仅仅表现在数学考试中能解题,还应在日常生活中,时时处处表现出是个学过数学的人,它是在长期的数学学习中逐步内化而成的。
小学生应具备的数学素养:
1、从观念层面考虑,应具备自觉的定量、定量化数学意识。
数学意识是指用数学的观点和态度去观察解释和表示事物的数量关系、空间形式和数据信息,以形成量化意识和良好数感。
定量化数学意识:指人们从实际中提炼数学问题,抽象化为数学模型,用数学计算求出此模型的解或近似解,然后回到现实中进行检验,必要时修改模型使之更切合实际,最后编制解题的软件包,以便得到更广泛的方便的应用。
2、从能力层面考虑,应具备问题解决的数学素养。数学源于于现实,寓于现实,并用于现实。数学教学的大众化目的,在于使学生获得解决他们在日常生活和工作中遇到的数学问题能力和可以用数学解决的其它问题。简言之,就是运用“数学化”的思维习惯去描述、分析、解决问题。
3、从语言层面考虑,应具备运用数学语言进行信息交流的数学素质。数学既是科学的语言,也是日常生活语言。数学语言是以精确、简约、抽象为特点。它可以使人在表达思想时做到清晰、准确、简洁,在处理问题时能将问题中的复杂关系表述的条理清楚、结构分明。随着新技术应用的日益广泛,利用数学进行交流的需要也日益广泛。在小学数学教学中利用交流这一手段有助于有意义的数学学习,如果在数学课堂中充满丰富的交流,可以获得双重效益:一是那些积极参加讨论的学生,在不同的争议中将对数学获得更好的理解;二是如果在数学课堂上给学生听、说、读、写数学的机会,他们将学会数学的交流。
4、从思维层面考虑,应具备数学推理能力。
《数学课程标准》中指出:“推理能力主要表现在:能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例;能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言合乎逻辑地进行讨论与质疑。”根据标准要求,掌握比较完善的推理能力是儿童智力发展的重要环节和主要标志,数学教学中应注意培养和发展儿童的推理能力。结合教学实际,我们认为小学数学中常用的推理有归纳推理、演绎推理和类比推理。
❻ 小学数学六大素养包括哪些
核心素养包括,三个在数学学习中应培养好数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析六大核心素养。
❼ 小学数学核心素养包括哪些
小学数学学科核心素养包含如下:
1、数感
关于数与数量、数量关系、 运算结果估计等方面的感悟。建立数感有助于学生理解现实生活中数的意义, 理解或表述具体情境中的数量关系。
2、符号意识
能够理解并且运用符号表示数、数量关系和变化规律; 知道使用符号可以进行运算和推理,得到的结论具有一般性。 建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。
3、空间观念
根据物体特征抽象出几何图形, 根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系; 描述图形的运动和变化;依据语言的描述画出图形等。
4、几何直观 利用图形描述分析问题。
借助几何直观可以把复杂的数学问题变得简 明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。
5、数据分析观念
了解现实生活中许多问题应先做调查研究,收集数据,通过分析做出 判断,体会数据中蕴涵着信息。
了解对于同样的数据可以有多种分析方法,需要根据问题背景选择合适的方法; 通过数据分析体验随机性。数据分析是统计的核心。
6、运算能力
能够根据法则和运算律正确地进行运算的能力。 培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。
数学核心素养的特点:
1、 在讨论问题时,习惯于强调定义(界定概念),强调问题存在的条件。
2、 在观察问题时,习惯于抓住其中的(函数)关系,在微观(局部)认识基础上进一步做出多因素的全局性(全空间)考虑。
3、 在认识问题时,习惯于将已有的严格的数学概念如对偶、相关、随机、泛涵、非线性、周期性、混沌等等概念广义化,用于认识现实中的问题。比如可以看出价格是商品的对偶,效益是公司的泛涵等等。
❽ 小学数学素养有哪些
“数学素养”是指在人的先天性生理基础上受后天环境、数学教育的影响,通过个体自身的努力和实践认知活动而获得的数学知识、数学能力和数学品质.数学素养是文化素养的重要因素,而文化素养又是民族素质的主要组成部分.因此,数学素养的优劣,直接关系着民族素质的好坏.同时,学生数学素养的提高,有利于培养人的辩证唯物主义世界观和实事求是、认真严谨、勇于探索、不断创新等良好个性品质,对学生的身心发展有重大的作用.为了有效地提高全体学生的数学素养,笔者就此谈些认识.
❾ 小学数学的十个素养
小学数学学科核心素养包含如下:
1、数感
关于数与数量、数量关系、 运算结果估计等方面的感悟。建立数感有助于学生理解现实生活中数的意义, 理解或表述具体情境中的数量关系。
2、符号意识
能够理解并且运用符号表示数、数量关系和变化规律; 知道使用符号可以进行运算和推理,得到的结论具有一般性。 建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。
3、空间观念
根据物体特征抽象出几何图形, 根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系; 描述图形的运动和变化;依据语言的描述画出图形等。
4、几何直观 利用图形描述分析问题。
借助几何直观可以把复杂的数学问题变得简 明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。
5、数据分析观念
了解现实生活中许多问题应先做调查研究,收集数据,通过分析做出 判断,体会数据中蕴涵着信息。
了解对于同样的数据可以有多种分析方法,需要根据问题背景选择合适的方法; 通过数据分析体验随机性。数据分析是统计的核心。
6、运算能力
能够根据法则和运算律正确地进行运算的能力。 培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。
7、推理能力
推理能力的发展应贯穿在整个数学学习过程中。 推理是数学的基本思维方式,也是学习和生活中经常使用的思维方式。
推理一般包括合情推理和演绎推理。在解决问题的过程中, 两者功能不同,相辅相成。合情推理用于探索思路,发现结论; 演绎推理用于证明结论。
8、模型思想
模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。 建立和求解模型的过程包括:问题抽象,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律, 求出结果并讨论意义。这些内容的学习有助于学生初步形成模型思想, 提高学习数学的兴趣和应用意识。