导航:首页 > 数字科学 > 八下数学学具有哪些

八下数学学具有哪些

发布时间:2023-02-18 20:23:48

㈠ 八年级下册数学内容有哪些

八年级下册数学内容有如下:

一、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

二、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

三、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

四、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

五、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

六、全等形:能够完全重合的两个图形叫做全等形。

七、全等三角形:能够完全重合的两个三角形叫做全等三角形。

八、对应顶点:全等三角形中互相重合的顶点叫做对应顶点。

九、对应边:全等三角形中互相重合的边叫做对应边。

十、对应角:全等三角形中互相重合的角叫做对应角。

㈡ 八年级下册数学有哪些知识点

第1章 二次根式

二次根式属于“数与代数”领域的内容,它是在学生学习了平方根、立方根等内容的基础上进行的,是对七年级上册“实数”“代数式”等内容的延伸和补充。二次根式的运算以整式的运算为基础,在进行二次根式的有关运算时,所使用的运算法则与整式、分式的相关法则类似;在进行二次根式的加减时,所采用的方法与合并同类项类似;在进行二次根式的乘除时,所使用的法则和公式与整式的乘法运算法则及乘法公式类似。这些都说明了前后知识之间的内在联系。
本章的主要内容有二次根式,二次根式的性质,二次根式的运算(根号内不含字母、不含分母有理化)。
一、教科书内容和教学目标
本章的教学要求。
(1)了解二次根式的概念,了解简单二次根式的字母取值范围;
(2)了解二次根式的性质;
(3)了解二次根式的加、减、乘、除的运算法则;
(4)会用二次根式的性质和运算法则进行有关实数的简单四则运算(不要求分母有理化)。
本章教材分析。
课本在回顾算术平方根的基础上,通过“合作学习”的三个问题引出二次根式的概念,并说明以前学的数的算术平方根也叫做二次根式。在例题和练习的安排上,着重体现三个方面的要求:一是求二次根式中字母的取值范围;二是求二次根式的值;三是用二次根式表示有关的问题。
对于二次根式的性质,课本利用第4页图1-2给出的。该图的含义是如果正方形的面积为,那么这个正方形的边长就是;反之,如果正方形的边长为,那么这个正方形的面积就是,因此就有。从而得出二次根式的第一个性质。至于第二个性质,可以通过学生的计算来发现,所以课本安排了一个“合作学习”,让学生自己去发现和归纳。该节第一课时的重点在于对这两个性质的理解和运用,例题和练习的设计就围绕这两个性质展开。第二课时是学习二次根式的另外两个性质,课本安排两组练习,意在让学生通过自己的尝试,与同学的合作交流来发现这两个性质。通过两个例题和一组练习,使学生知道运用二次根式的性质,可以简化实数的运算,也可以对结果是二次根式的式子进行化简。课本第9页的“探究活动”既是对二次根式的运用,更在于培养学生的一种探究能力,观察、发现、归纳等能力。
第1.3节二次根式的运算,包含了二次根式的加、减、乘、除四种运算以及简单应用,课本安排了3个课时,逐步推进,逐渐综合。第一课时侧重于两个(相当于两个单项式)二次根式的乘除,其法则是从二次根式的性质得到的,比较自然。例1是对两个运算法则的直接运用,让学生有一个对法则的熟悉和熟练过程;例2是一个结合实际问题的运用,其中有勾股定理和三角形的面积计算。第二课时是二次根式的加减和乘除混合运算,出现了类似单项式乘以多项式、多项式乘以多项式(包括乘法公式、乘方)、多项式除以单项式的运算。课本中没有出现“同类二次根式”的概念,只是提到“类似于合并同类项”“相同二次根式的项”,这种类比的方法,学生是能够理解的,也能够与整式一样进行运算。第三课时是二次根式运算的应用。例6的数字看上去比较复杂,其目的是为了二次根式的运算的应用;例7综合运用了直角三角形的有关知识、图形的分割、面积的计算等,其解答过程较长,也是对二次根式知识的综合运用。
二、本章编写特点
注重学生的观察、分析、归纳、探究等能力的培养。
在本章知识的呈现方式上,课本比较突出地体现了“问题情境——数学活动——概括——巩固、应用和拓展”的叙述模式,这种意图大多通过“合作学习” 来完成。“合作学习”为学生创设了从事观察、猜测、验证交流等数学活动的机会。如第5页先让学生计算三组与的具体数值,再议一议与的关系,然后得出二次根式的性质“=”。二次根式的其他几个性质,课本中也是采用类似的方法。在学习了二次根式的有关性质后,课本又设计了一个“探究活动”,通过化简有关的二次根式,让学生自己去发现规律、表示规律、验证规律,并与同伴交流。所有这些都是教材编写的一种导向,以引起教与学方式上的一些的改变。
注重数学知识与现实生活的联系。
教材力求克服传统观念上学习二次根式的枯燥性,避免大量纯式子的化简或计算,适当穿插实际应用或赋予式子一些实际意义。无论是学习二次根式的概念,还是学习二次根式的性质和运算,都尽可能把所学的知识与现实生活相联系,重视运用所学知识解决实际问题能力的培养。如二次根式概念的学习,课本通过三个实际问题来引入,其目的就是关注概念的实际背景与形成过程,克服机械记忆概念的学习方式。又如,课本第3页,用二次根式表示轮船航行的的距离,第11页求路标的面积,第21页花草的种植面积问题等。特别是在二次根式的运算中,专门安排了一节内容学习二次根式运算的应用,例6选取的背景是学生熟悉的滑梯,例7选取的背景是学生感兴趣的剪纸条,以及作业中的堤坝、快艇问题等等。
充分利用图形,使代数与几何有机结合。
对于数与代数的内容,教材重视有关内容的几何背景,运用几何直观帮助学生理解、解决有关代数问题,是教材的一个编写特点,也是对教学的一种导向。本章中,如二次根式与直角三角形有关边的计算密切相关,课本在这方面选取了一定量的问题,既丰富了勾股定理的运用,又学习了二次根式的计算。又如二次根式的引入,课本以图形作为条件,让学生通过计算给出二次根式的概念;在学习二次根式的性质时,课本通过让学生读图1-2,从正反两方面来理解其含义,得出二次根式的性质。例题中结合图形示意,帮助学生理解问题,解决问题;作业或课本练习中设计一些图形中有关线段长度的计算;通过方格、直角坐标系来画三角形、确定点的位置等等。课本在安排二次根式的运算在日常生活和生产实际中的应用时,所选取的问题也在于体现学生所学知识之间的联系,感受所学知识的整体性,不断丰富学生解决问题的策略,提高解决问题的能力。
三、教学建议
注意用好节前语。
本章的节前语不多,但都紧密结合本节学习的内容,提出一个具体的问题。教学中可以利用它们来创设问题情境,引入课题。如第1.1节“排球网的高AD为2.43米,CB为米,你能用代数式表示AC的长吗?”短短的几句话,既是一个学生熟悉的问题情境,又是一个看似熟悉但又具有一定的挑战怀,与数学学习相联系的问题,教师可以由此提出一个与本节课学习有关的问题。教学中不应忽视这种作用。
注意把握教学难度。
与以往的教材相比,二次根式已降低了要求。如运用二次根式的性质将二次根式化简,只要求简单的,不要出现过于复杂的式子,并且明确根号内不含字母。对二次根式的四则运算,也仅局限于简单的,根号内不含字母,教学中不需补充超出课本题目要求的问题。当然对不同层次的学生,应该体现一定的弹性。课本第15页的作业题中的第7,8题,还可以借助于计算器进行计算。
充分运用类比的方法。
二次根式的运算以整式的运算为基础,其法则、公式都与整式的类似,特别是二次根式的加减,课本没有提出同类二次根式的概念,完全参照合并同类项的方法;二次根式的乘除、乘方运算类似于整式的乘除、乘方运算。因此对于二次根式的四则运算的教学应充分运用类比的方法,让学生理解其算理和算法,提高运算能力。
第2章 一元二次方程

一、教科书内容和课程学习目标
(一)教科书内容
本章包括三节:
2.1 一元二次方程;
2.2一元二次方程的解法;
2.3一元二次方程的应用。
其中2.1节是全章的基础部分,2.2节是全章的重点内容,2.3节是知识应用和引申的内容。另外,阅读材料介绍了一元二次方程的发展,让学生了解数学的发展史。
(二)本章的知识结构

(三)课程目标
(1)了解一元二次方程的概念,会用直接开平方法解形如(b≥0)的方程;
(2)理解配方法,会用配方法解数字系数的一元二次方程;掌握一元二次方程求根公式的推导,会用求根公式解一元二次方程;会用因式分解法解一元二次方程,使学生能够根据方程的特征,灵活运用一元二次方程的各种解法求方程的根。
(3)体验用观察法、画图或计算器等手段估计方程的解的过程。
(4)能够根据具体问题中的数量关系,能够列出一元二程方程解应用题,能够发现、提出日常生活、生产或其他学科中可利用一元二次方程来解决的实际问题,并正确地用语言表达问题及解决过程。体会方程是刻画现实世界的一个有效的数学模型。
(5)结合教学内容进一步培养学生逻辑思维能力,对学生进行辩证唯物主义观点的教育,通过一元二次方程的教学,使学生进一步获得对事物可以转化的认识。
(四)课时安排
2.1 一元二次方程…………………………………………………………2课时
其中:一元二次方程的概念……………………1课时
因式分解法解一元二次方程……………1课时
2.2一元二次方程的解法………………………………………………4课时
其中:开方法、配方法………………………2课时
公式法…………………………………2课时
2.3一元二次方程的应用………………………………………………2课时
小结、目标与评定………………………………………………………2课时
二、编写指导思想与特点
方程教学在中学数学教学中占有很大的比例,一元二次方程在初中代数中占有重要地位。一方面,一元二次方程可以看成是前面所学过的有关知识的综合运用,如有理数、实数的概念和整式、分式、开平方等的运算,一元一次方程、一元一次方程组解法等知识,在本章都有应用。从数学角度看,这一章的学习有一定难度,如果前面某个环节薄弱或知识点有问题,就会给本章的学习带来困难,因此,这一章的教学是对以前所学的有关知识的检验,又是一次复习与巩固。当然,一元二次方程知识也是前面所学知识的继续和发展,尤其是方程方面知识的深入和发展。
本章的主要内容是一元二次方程的解法和应用,课本首先引入一元二次方程的概念,从实数的性质,将分解成为两个一次因式相乘积为零的一元二次方程转化为两个一元一次方程入手,介绍了利用因式分解法解一元二次方程的方法,体现了数学的转化思想。接着课本首先从数的开平方的知识出发,直接讲开平方法,然后依次介绍了配方法和公式法。在讲述公式法的同时,课本特别给出了利用计算器解一元二次方程的解法示例,以揭示技术发展给数学学习带来的影响,这也是一种新的尝试。同时,以建立数学模型为主要着力点介绍了一元二次方程的应用,并在例题的设置上充分考虑了图表、立体图形、物体运动和经济活动中的问题背景,力图使学生在现实的环境中学习数学。
这一章是全书乃至整个初中代数的一个重点内容。因为这一部分内容既是对以前所学内容的总结、巩固和提高,又是以后学习的知识基础。因此这一章可以说是起到了承上启下的作用。高中阶段的指数方程、对数方程及三角方程,无非就是指数、对数、三角函数的有关知识与一元一次方程、一元二次方程的综合而已。初中代数中的不少主要技能、解题方法以及一些常用的数学思想方法,在本章都有所体现。例如,换元法、因式分解法、配方法等。另外,从具体到抽象的概括能力、逻辑推理能力等等在本章也有体现。可以说,无论从基础知识还是基本技能看,这一章都占有重要的地位。在本章的内容中,应以一元二次方程的解法,特别是公式法作为重点。
三、教材体现的数学思想方法
本章从内容上看是初中代数的重点,从数学思想方法方面来看,也是初中数学中比较全面体现的一章。
1.方程的思想
方程本身就提供了一种重要的数学思想方法,这一点在一元二次方程中体现的更为充分。学习方程不仅为进一步学习其他知识打下基础,不仅可用于解决一些实际问题,而且在更广泛的意义上讲,通过方程可以沟通已知与未知之间的联系,从而由解方程就可以使问题得以解决,通常称之为方程思想。方程思想作为一种数学思想,在数学发展史上有重要作用,对求解数学问题来说也有重要的意义。
2.公式解法
一元二次方程的公式解法在数学思想方法上有重要意义。首先,公式法是人们所知的多次方程的第一种公式(根式)解,它为以后进行公式解的研究开辟了道路,并且是引起近似代数的起源问题之一,在数学的学习中也有重要意义;其次,公式法解体现了数学中的算子的思想,将数学问题进行抽象化、符号化、程序化,这是数学发展的重要的途径。
3.分类讨论的数学思想
一元二次方程求根公式中,涉及开方问题,即对要实施开平方,而前面已经学过负数没有平方根。因此的状态就决定了一元二次方程根的状态。必须对的符号进行讨论。分类讨论的数学思想是一种极为重要的数学思想方法,教材中对Δ=的三种分类讨论隐含在课堂教学之中,通过“想一想”让学生自然地得到结论,降低由于数学思想上的要求所带来的学习上的难度,这是一种合理的处理方法。实际上,判别式的讨论是不解方程而对方程的根进行定性研究的重要指标。在研究二次函数的图象和性质等方面有重要意义,在研究二次曲线的问题时有重要地位。判别式实质上是利用方程的系数研究方程的性质,是一种以局部研究探求具体性质的方法。找一种关键性的数量关系去定性地研究一类对象,也是一种常见的数学思想方法。
4.转化(化归)的数学思想
在本章中更突出地表示出“转化”的思想方法。如利用因式分解法解一元二次方程就是将一元二次方程转化为两个一元一次方程。严格地说,转化的思想是数学中认识和掌握新知识的重要途径,掌握这种方法,可以提高学生的数学能力,拓展学生数学知识。如换元法就是一种很重要的转化思想,这在本章也有不少的体现。
四、教材处理
关于教材处理,按教材内容的安排及课程标准的要求,分三部分进行分析:
1.一元二次方程
本节包括一元二次方程的概念、因式分解法解一元二次方程,这一单元是本章的基础,教材两个问题中引入了一元二次方程的概念,一个问题是学生所熟悉的正方形和长方形的面积,另一个问题是从报纸上公布的统计数据,教学的重点是对方程的一般形式的认识和对方程解的理解,在此基础上,引入用因式分解法求一元二次方程解的方法,将这种解安排在此处,其目的是为了加强学生对学习方程目的的理解,并为后续通过转化求方程解奠定思想基础。
2.一元二次方程的解法
本节是本章的核心内容,主要是一元二次方程的各种解法。其中的一元二次方程的配方法和应用一元二次方程知识理解应用问题是重点,而这两个重点又是教学过程中的难点。一元二次方程的解法,尤其是公式法是学好本章的关键。因此,本节又是全章的重点,是学好本章的基础。
一元二次方程的解法,课本介绍了四种,即直接开平方法、配方法、公式法及因式分解法。
直接开平方法适用于(b≥0)模式的方程。实际上,给出的一般方程只要存在实根,就可以用配方法转化为的形式。例如,课本中将方程转化为,因此配方法是直接开方法的延伸,而直接开平方法是配方法的基础。
在配方法解一元二次方程的基础上,很自然地推出一元二次方程的求根公式,实际上就是对一般形式(a≠0)的一元二次方程实施配方法的结果。
对于三种解法,公式法可以是一种“万能”方法,只要△=≥0,将系数a,b,c代入公式即可求解。在教学中注意一元二次方程中的a≠0的条件。在配方时应强调方程两边同时加上“一次项系数之半的平方”或在左端加上“一次项系数之半的平方”再减去“一次项系数之半的平方”,实质上是方程的一种同解变形,这是必须反复训练方可达到学生熟练进行配方的目的,它也是推导求根公式的基础。
对△=的讨论,首先要渗透分类讨论的思想,另外,对△==0的情况,一定要强调有两个相等的实根:这与方程根的理论一致,学生开始会认识只有一根,要反复强调,以纠正这种不正确的或说是不严密的结论。对△=<0的情况,不能说成方程无解,而应强调方程无实数根或在实数范围内无解,强调数域是为今后在高中讨论有复根的情况埋下伏笔。理论上的证明见教师用书。
关于一元二次方程根与系数的关系,实际上,求根公式就体现了根与系数的关系,由于课程标准中没有涉及,但这部分内容对于今后的学习是很重要的,在教学中可以作为探索性学习的内容,让学生自己进行探索并得出结论。
3.一元二次方程的应用
列方程解应用问题,前面一元一次方程的应用已学习过相关的知识,但是列一元二次方程解应用题仍然是难点,其原因是数量关系比较复杂且隐蔽;应用题所反映的实际背景比较复杂而学生又不太熟悉;所列方程也逐步复杂。主观上学生一开始受算术解法思维的定势影响,缺乏广泛的社会经济生产和生活以及相关学科方面的知识,理解文字语言和数学语言等方面的能力较差。
对于求解应用题,若从思想方法角度来看,列方程解应用题属于数学模型法,其中方程应用题求解,大体上都是这样六个步骤:①审题,理解题意,明确题中涉及几个量,有几个是已知量,有几个是未知量,它们之间有什么关系等等;②设元,根据题目要求,选择合适的未知数,又分为直接设元法、间接设元法。同时还要考虑设几个未知数为宜;③列式,分析题目中量与量的关系,关键是找出题目中的相等关系,这时,要注意挖掘题目中的那些隐蔽的相等关系,有时,又要辅之使用图示法、列表法等一些直观手段;④求解;⑤检验,既要检验得到的解是否符合原方程或原方程组,又要检验所得的解对实际问题是否有意义;⑥作答,写出正确合理的答案。在教学中可以结合问题解决的策略,让学生主动参与,自主建构和合作学习,体会数学建模的基本思想与方法。

(金克勤)

第3章 频数及其分布

统计学是搜集数据、分析数据,并根据它获得总体信息的科学.本套教材在七年级上册安排了 “数据与图表”,着重介绍了数据的收集、整理的初步方法;在八年级上册安排了“样本与数据分析初步”,通过对数据集中程度和离散程度的统计量的计算,初步了解了如何对数据的基本状态进行分析.为了进一步分析、处理数据,供决策时参考,有时我们还要了解数据的分布情况,找出新的特征数.“频数及其分布”这一章就是解决了这一问题.“频数及其分布”这部分内容在原总指浙江版义务教材中也有,但只是作为概率统计初步中的一小节.考虑到频数、频率、频数直方图、频数折线图与日常生活、自然、社会和科学技术领域的密切联系,《数学课程标准》增加了这块内容的份量.本套教材将这块内容独立设章的目的,一方面可用足够的篇幅来更清楚、更详细阐述,也是为每册循序渐进地学习概率与统计知识所作的精心安排.
本章教学时间约需7课时 ,具体安排如下:
3.1 频数和频率 1课时
3.2 频数分布 1课时
3.3 频数的应用 3课时
复习、评估1课时,机动使用1课时,合计7课时.
一、教科书内容和课程教学目标
(1)本章知识结构框图如下:

(2)本章教学目标如下:
目标类别
目标层次
知识点及相关技能 知识技能目标 过程性目标
了解 理解 掌握 灵活运用 经历(感受) 体验(体会) 探索





布 极差 √ √
频数的概念 √ √
频数分布表 √ √
频率的概念 √ √
频数分布的意义和作用 √ √
频数分布直方图 √ √
频数分布折线图 √ √
根据频数分布直方图估计平均数 √ √

(3)本章教学要求
① 通过实例,理解频数、频率的概念,了解频数分布的意义和作用.
② 会计算极差,会对数据合理分组,并求出每一组的频数、频率,列出频数分布表.
③ 会画频数分布直方图和频数分布折线图,能根据频数分布直方图估计平均数,能根据数据处理的结果,作出合理的判断和预测,并在这一过程中体会统计对决策的作用.
④ 通过画直方图、折线图养成学生耐心细致的工作作风,实事求是的工作态度,善于观察、分析问题的能力.
二、本章编写特点
以《数学课程标准》为本,删繁就简、突出重要内容
画频数分布直方图不采用传统按部就班的逐步介绍的方法,步骤多、方法繁将会影响这个年龄段的学生学习兴趣.事实上,如3.1节做一做,“下面给出以0.4 kg为组距,取2.75~3.15、3.15~3.55……为端点”;对连续型、离散型数据的不同处理等,里面还有许多道理.不在繁琐的具体枝节上纠缠,突出重要概念,让学生体验频数、频率的真实含义,理解频数、频率分布的意义和作用才是教学的真正目的,也是本章教材编写的特点之一.
精心选择实例,贴近学生生活,引起学生兴趣
频数、频率本身就是处理实际问题,从实际中来,在解决实际问题的过程中引入概念.教材精心挑选、引入大量学生熟悉的例子,创设学生熟悉的情境,引起学生兴趣,使学生能产生解决它的欲望.扫除一定程度上因为叙述事例的冗长而引起学生反感.如血型分布、运动鞋鞋号的选择、学科成绩、午餐等候时间、矿泉水质量等等都是学生身边的事,学生熟悉且亲切.同时也培养了学生从统计的角度思考与数据信息有关的问题,通过收集、分析数据的过程能初步作出合理的决策,提高学生处理问题、决策问题的能力.
重实践操作,设计一定量的数学活动,在交流中增强数学应用意识
本章内容安排了一定量的实习操作性的活动,如“八年级男生、女生身高和所穿运动鞋的分布”“八年级学生跳绳次数的频数分布”“八年级男生、女生体重数据的分布”“商场不同价格的彩电销售情况”等,这些活动都需要学生分小组合作,事前精心设计策划,调查广泛接触不太熟悉的人和事,希望学生通过这些活动认识现实世界中蕴含的大量的数学信息,数学与现实世界有着紧密联系,增强学生的数学应用意识,也培养学生实际工作能力,从中获得克服困难经历或者体会获得成功的喜悦.
三、教学建议
(1) 画频数分布直方图的一般步骤是:①计算极差;②决定组数与组距.一般当数据在100个以内时,按照数据多少,常分为5~12组;组距是指每个小组的两个端点之间的“距离” , = 组距;③决定分点,为了避免有些数据本身落在分点上,常常将分点多取一位小数;④列表、划记;⑤画频数分布直方图.教师根据实际情况在讲解中灵活应用,但不要完全在黑板上重复以上步骤,这样违背了教材编写的初衷.
(2) 利用频数分布表、频数直方图、频数折线图来分析数据的一些特征是教学的重点之一,教学中应该充分发挥学生的积极性,让学生仔细地观察、大胆地推测、合理地验证.“统一订购运动服、运动鞋,应注意哪些问题?”“校方安排学生多长的午餐时间为宜?”“估计鱼塘中有多少条鱼”“分析男生、女生游泳项目成绩差异”等等,不像原来数学题有唯一标准答案,应鼓励学生各抒已见,最后在充分讨论的基础上形成比较一致的意见.这是与人交流、勇于探索、比较清晰表达自己观点的重要方式,也是新课程数学教学的一个重要方面,教师可视具体情况在本章教学中尽量体现.
(3)计算繁琐,联系实际紧密是本章的主要特点.除了课本提供的范例外,教学中教师可根据实际情况进行适当补充.同时教师还应该充分利用多媒体预先制作好一些教具,不要使课堂上宝贵的时间浪费在抄写、绘图上面.
四、本章教学中应注意的问题
(1)数据有“连续型”与“离散型”两种,对离散型数据,如课本第51页的血型分组一般比较容易,对离散型数据分组不唯一,仅是根据经验,不同的分组一般得到的结论也有所差别,但只要合理均认为正确.
(2)进行实践活动时,要注意有些问题可能涉及学生的个人隐私,如较胖的女同学不愿意论及自己的体重,她认为公开自己的体重是侵犯了个人隐私权;一分钟跳绳次数比较少的同学也可能觉得没面子而出现一些不愉快事情.针对这些情况任课教师应有充分的思想准备,采取回避或选择一些合适的同学或选择另外适当的数据作调查对象等办法.我们的目的是通过一些实践活动在交流中培养互相合作的精神,与人合作中体会愉快,用数学知识解决实际问题中,增强应用数学的自信心.不要因为个别特殊原因干扰整个教学计划.
(3)直方图的纵坐标与横坐标一般来说有不同的单位,每个单位的具体长度应在比较中进行选择.最终的要求是画出来的图形比较美观,能清楚反映分布情况、及变化趋势.课本所采用画折线 的办法就是避免图形画在极端的位置.在不影响整个图形所反映基本特征的情况下,使频数直方图或频数折线图更加美观.也可以采用将学生所画的图比较展览的办法,让学生在交流中取长补短,互相吸收别人好的经验,来完善自己画图技能.

㈢ 初中数学教具有哪些

初中数学教具一般有:黑板擦、粉笔(包括彩色)、三角板、圆规、量角器、投影仪,另外有条件的话,可配备平行线、三角形、四边形等演示器,常见立体模型如用作课件的话:多媒体、几何画板、画图工具等。

㈣ 小学数学比较容易制作的教具和学具有哪些

几何图形:三角形 正方形等

㈤ 八年级下册数学教案平行四边形

平行四边形是初中数学下册一个重要的知识点, 下面我为你整理了 八年级 下册数学教案平行四边形,希望对你有帮助。

八年级下册数学教案(教材与学情分析)

平行四边形的认识,教材分两段编写,本单元是第一次出现,只要求学生能够从具体的实物或图形中识别出哪个是平行四边形,对它的一些特点有个初步的直观认识即可。本节课平行四边形的认识分为两个层次。第一层次,感悟平行四边形的特性,第二层次,认识平行四边形。平行四边形的出现对于丰富学生对现实世界的认识,发展学生的空间观念都有十分积极的意义。本节课教材结合学生的生活实际,通过观察、操作、体验构建直观的、形象化的平行四边形表象,不仅能引导学生感受数学的 学习 方法 ,体验数学学习的乐趣,积累数学活动 经验 ,同时也为学生将来进一步学平行四边形等平面图形知识奠定基础。

二年级下学期的学生已经积累了一些有关“图形与几何”的知识和经验,形成了一定程度的空间感。学生在一年级上学期就对长方形、正方形,三角形和圆形有了初步的认识,一年级下学期对长方形和正方形又有了进一步的认识,而本单元认识四边形时对长方形、正方形边和角的特征进行了进一步的学习,可以说学生对平面图形的感知已经有了一定的基础。平行四边形的认识,教材中是第一次出现,在生活中有部分学生接触过,对这部分内容的学习要注意结合学生已有的生活经验,借助学生生活实际有关的具体情境,学生才能比较容易掌握。教学中还应充分利用各种教具、学具和现代信息技术,为学生提供观察、操作、体验的活动空间,引导学生直观地认识平行四边形,进一步发展空间观念。

八年级下册数学教案(教学目标)

知识技能:

1.在联系生活实际和动手操作的过程中初步认识平行四边形,使学生能够识别平行四边形,知道平行四边形容易变形的特性和对边相等的基本特征。

2.根据平行四边形的基本特征会在方格纸上画平行四边形。

过程方法:

1.使学生在观察、动手操作、想象,情境描述等活动中,通过有条理的思考和简单的推理,经历体验平行四边形的基本特征的过程,进一步积累认识图形的经验,形成表象,进而发展空间观念。

2.通过剪一剪,画一画,改一改等数学活动,培养学生运用数学的 思维方式 进行思考问题,知道同一个问题可以有不同的解决方法。

情感态度:

1.感受图形与生活的联系,使学生体会平行四边形在生活中的应用,培养数学应用意识,增强对“图形与几何”的学习兴趣。

2.通过多种学习方式促进学生积极参与数学活动,对数学有好奇心和求知欲。

教学重点:使学生知道平行四边形对边相等、容易变形的特征。

学具准备:长方形框,每人一长方形纸,尺子,剪刀。

教具准备:多媒体课件,各种图形、卡片。

八年级下册数学教案(教学过程)

一、创设情境,了解问题。

1.初步感知,形成表象。

教师手拿可变形的长方形框架

回顾旧知:长方形边和角有什么特征?

师推拉长方形框让学生直观感受长方形框变成平行四边形框的过程。

揭示课题:像这样的图形是平行四边形。

师:这节课余老师将和同学们一起来认识平行四边形。(板书课题)

【设计意图:把平行四边形放在与长方形的联系中揭示,让学生在这样的图形体系背景下学习,初步了解要研究的问题,达到回顾旧知、引出新知的良好效果。更重要的是在这个过程中学生体会到先进的思维方式&mdash;&mdash;迁移。】

二、抓住关键,建立表象。

1.动手操作,感悟特征。

学生动手推拉长方形框。

生动手操作,师巡视,给学生充分“玩”的时间。

思考:拉长方形的一组对角,长方形的边和角有什么变化?

2.交流汇报,描述特征。

师:仔细观察这个平行四边形,说一说,它有哪些特征?

思考:用什么办法知道平行四边形的对边相等?

师:老师也想和同学们再玩一玩这个平行四边形,我们边玩边说(推拉过程)这样叫容易变形,对边相等,这条边的对边是这条边,还有另一组对边是这两条边。

【设计意图:利用新旧知识之间的联系,从知识的逻辑顺序和大数学观的背景中引导学生初步发现平行四边形和已学的长方形之间的联系,抓住问题的关键,让每一位学生通过推拉长方形框,既动手又动脑,充分发挥学生的主动性,感悟平行四边形的特性,从而发现平行四边形与长方形的联系,培养了学生的合情推理能力。】

3.联系生活,深化表象。

师:生活中你在哪儿也见过平行四边形?

师用课件展示生活中平行四边形图片,感悟易变形特性在生活中的应用。

4、初步应用,识别图形。

出示练习九第1题。

提出疑问:为什么这些图形不是平行四边形?

【设计意图:平行四边形在实际生活中有着广泛的应用,通过让学生说、找说明几何图形无处不在,启发学生用数学的眼光去观察、去思考,使学生懂得数学与生活的联系。】

三、应用知识,操作体验。

1.剪一剪

师:如果要把这张长方形纸变成平行四边形形纸,该怎么变呢。

用课件演示长方形纸变成平行四边形的过程。

思考:如果长方形纸对折的次数越多,剪出来的平行四边形越 ( )?

学生动手剪一个自己喜欢的平行四边形。(播放音乐,师辅导需要帮助的同学)

【设计意图:应用长方形和平行四边形“对边相等”这一共性的知识进行操作,在剪一剪中对长方形和平行四边形的关系进行了梳理,学生对平行四边形的特征加以巩固、辨析。通过观察想象 “长方形对折的次数越多剪出来的平行四边形越接近长方形” 释放学生想象的空间和时间,让学生感悟数学的极限思想。通过梳理,培养了学生的推理能力和思维能力,为今后学平行四边形的面积奠定了坚实的基础。】

2.画一画。

师:接下来,请同学们拿出方格纸,根据自己的想象画一个平行四边形吧!

展示学生不同的画法。

3.改一改

做书上练习九第3题。师巡视感受学生不同的解题策略。

师:同学们会用这么多的方法把画错的图形改成平行四边形,余老师佩服你们。

【设计意图:在学生对平行四边形的特征有了充分的体验认知后,设计了“画一画”、“改一改”.本环节的练习设计贴近学生的生活实际,又具有开放性、层次性,趣味性。通过练习完善学生已有的知识体系,体会解决问题策略的多样性,在解决问题中提高学生的思辨能力,而且渗透了平行四边形和梯形的联系。】

四、表述呈现,体验成功。

说一说,想一想。

师:现在我们一起来放松一下,做个游戏:游戏的名称叫“我说你猜”。

老师出示图形的名称,一个同学描述图形的特征,其他同学猜图形的名称。

【设计意图:通过“我说你猜”这样的变式练习让学生对所学的图形特征用自己的语言进行描述,是对学生认知的强化,学生必须掌握每个图形的特征才能透过现象抓住本质,使学生的思维更加深刻。】

五、 反思 评价,小结收获。

1.自评学习过程

师:回忆一下刚才的学习过程,让你印象最深的是哪个活动,在这个过程中,你收获了什么或者懂得了什么?

【设计意图:让学生回顾自己的学习过程,进行反思评价,并通过引导学生思考:在这个活动中,你获得了什么?让学生明白自己的学习过程,培养 学生 自我评价 的意识和反思学习的习惯。】

八年级下册数学教案(设计思路)

数学活动经验的积累是提高学生数学素养的重要标志。数学活动经验需要在“做”的过程和“思考”的过程中积淀,是在数学学习活动过程中逐步积累的。为此本节课的设计思路主要体现了如下特点:

一、动手操作,让学生自主建构知识。

动手实践、自主探索与合作交流是学习数学的重要方式。因此在教学中我努力创造条件让学生在动手操作活动中“做”数学,使学习数学的过程成为学生运用所学知识再创造的过程,让学生成为探索者、发现者。本节课通过由“长方形到平行四边形”转化,培养学生观察能力和推理能力,并通过剪一剪、画一画、改一改等数学活动让学生自主建构知识,学生只有在这样的操作活动中才能真正经历观察、猜测、想象、分析和推理等过程,学生的空间观念才能得到发展。

二、解决问题,让学生成为思考者。

让学生运用平行四边形对边相等的特征进行解决问题,让学生充分体验解决问题策略的多样化。在“改一改”这个环节我放手让学生独立思考,亲身经历图形的修改过程,并展示学生多种修改方案,把学生的多种思维过程充分暴露出来,让学生感受解题策略、方法的多样化。

㈥ 小学数学教学用具有哪些

三角板,量角器,数字卡,教学挂图,计数小棒,圆规,直尺,方格纸,天平,台称,等等。

㈦ 初中数学使用的学具j具体有哪些

一、直尺、圆规、三角板、计算器
二、几何模型(拼图类)(平面的如纸质三角板、园、多边形等,立体的如圆柱、圆锥、长方体等 )
三。现代电子类:如图形计算器、平板电脑等

㈧ 小学生数学学具有哪些

小学生数学学具有:

1、小棒

2、计数器或计数表

3、口算练习卡片

4、圆形口算练习板

5、钟面和七巧板

小学数学学具的作用

1、小棒:有单根的,也有成捆的,用来学习认数和计算。

2、计数器或计数表:用来学习百以内和万以内数的读法和写法。

3、口算练习卡:利用口算练习卡,让孩子定时的练习,以提高孩子的计算能力。

4、圆形口算练习板:用来进行口算练习,不仅能提高口算能力,还能激发孩子的学习兴趣。

5、钟面和七巧板:钟面可以帮助孩子认识时间单位时、分、秒。七巧板可以拼组各种各样的图形,通过拼组图形让孩子更好的认识图形的特征。

(8)八下数学学具有哪些扩展阅读

学具

1、学具,顾名思义就是指可供学生在开展学习活动时直接操作的用具。由于它可以由学生自己动手直接触摸、摆弄,因此对学具所代表的客观事物可以较清晰、牢固地掌握。

2、通过学具的运用,不仅有利于把客观事物的属性内化为自己的认识,而且也使学生认识事物的内部心理过程得以较清晰地外化为操作的过程。

3、这就便于教师发现学生的思维过程中的不同特点,对过程中暴露出来的思维障碍予以及时指导,以防止或减轻他们在学习过程中可能出现的或已经存在的病理现象。

4、在学具运用中,由于优秀生可以较清晰地展示自己的学习过程,因此有利于班上的学生,特别是有利于差生的学习。

5、常用到学具的学科有数学、物理、化学、自然、美术等。

6、数学学习困难生的转化是数学教学中的老大难问题,而提高困难生的主体参与意识是实现转化的关键。学具的运用有效的提高了学生的主体参与意识。

7、利用学具可进行有效的基本技能训练;学具是解决学生学习困难症结的有效工具;利用学具进行考核可使评价产生激励作用;学具教学活动增强了学生的合作意识。

8、物理教学的特色是以实验为基础,实验教学是物理教学中极为重要的组成部分。近年来发行的物理学具的使用,能够大面积地调动学生的积极性,有利于学生主动探索知识的发生与发展。同时也有利于教师创造地进行教学。

阅读全文

与八下数学学具有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:705
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1318
华为手机家人共享如何查看地理位置 浏览:1010
一氧化碳还原氧化铝化学方程式怎么配平 浏览:848
数学c什么意思是什么意思是什么 浏览:1369
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1350
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1023
大学物理实验干什么用的到 浏览:1449
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:832
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1608
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1452
数学中的棱的意思是什么 浏览:1017