导航:首页 > 数字科学 > 初中数学如何求最大值最小值

初中数学如何求最大值最小值

发布时间:2023-02-19 20:11:39

A. 如何求函数的最大值与最小值

求函数的最大值与最小值的方法:

f(x)为关于x的函数,确定定义域后,应该可以求f(x)的值域,值域区间内,就是函数的最大值和最小值。

一般而言,可以把函数化简,化简成为:

f(x)=k(ax+b)²+c 的形式,在x的定义域内取值。

当k>0时,k(ax+b)²≥0,f(x)有极小值c。

当k<0时,k(ax+b)²≤0,f(x)有最大值c。

关于对函数最大值和最小值定义的理解:

这个函数的定义域是【I】

这个函数的值域是【不超过M的所有实数的(集合)】

而恰好(至少有)某个数x0,

这个数x0的函数值f(x0)=M,

也就是恰好达到了值域(区间)的右边界。

同时,再没有其它的任何数的函数值超过这个区间的右边界。

所以,我们就把这个M称为函数的最大值。

(1)初中数学如何求最大值最小值扩展阅读:

常见的求函数最值方法有:

1、配方法: 形如的函数,根据二次函数的极值点或边界点的取值确定函数的最值。

2、判别式法: 形如的分式函数, 将其化成系数含有y的关于x的二次方程.由于, 0, 求出y的最值, 此种方法易产生增根, 因而要对取得最值时对应的x值是否有解检验。

3、利用函数的单调性 首先明确函数的定义域和单调性, 再求最值。

4、利用均值不等式, 形如的函数, 及, 注意正,定,等的应用条件, 即: a, b均为正数, 是定值, a=b的等号是否成立。

5、换元法: 形如的函数, 令,反解出x, 代入上式, 得出关于t的函数, 注意t的定义域范围, 再求关于t的函数的最值。

B. 初中数学在函数或者几个图形中,有什么方法求最大最小值

我是初三学生,咱俩应该有点共同语言,,

1.在一次函数和正比例函数中,求最大最小值需要通过x的取值范围来求。

2.在二次函数中,求最大最小值是4a分之4ac-b²
用在题中的话,大多数是: 当x=﹣2a分之b时,y的最大或最小值等=4a分之4ac-b²
a,b,c是从y=ax²+bx+c中得来的。

3.在图形中,要根据边长的取值范围。

比如说 在三角形中 两边之和大于第三边,两边之和小于第三边
在直角三角形中a²+b²=c²
还有一些是 动点在图形的边上运动 这样的话 动点运动的距离不能超过图形的边长

基本就是这样。我数学还不错,有不会的欢迎来问我!

祝你学习进步!

C. 初中数学求最大最小值方法

求最大值和最小值用的最多的方法就是用二次函数搞,一般数学题都可以用二次函数求出最大值和最小值。

D. 求函数的最大值和最小值的方法。

常见的求最值方法有:

1、配方法: 形如的函数,根据二次函数的极值点或边界点的取值确定函数的最值.

2、判别式法: 形如的分式函数, 将其化成系数含有y的关于x的二次方程.由于, ∴≥0, 求出y的最值, 此种方法易产生增根, 因而要对取得最值时对应的x值是否有解检验.

3、利用函数的单调性 首先明确函数的定义域和单调性, 再求最值.

4、利用均值不等式, 形如的函数, 及≥≤, 注意正,定,等的应用条件, 即: a, b均为正数, 是定值, a=b的等号是否成立.

5、换元法: 形如的函数, 令,反解出x, 代入上式, 得出关于t的函数, 注意t的定义域范围, 再求关于t的函数的最值.还有三角换元法, 参数换元法.

6、数形结合法 形如将式子左边看成一个函数, 右边看成一个函数, 在同一坐标系作出它们的图象, 观察其位置关系, 利用解析几何知识求最值.求利用直线的斜率公式求形如的最值.

7、利用导数求函数最值2.首先要求定义域关于原点对称然后判断f(x)和f(-x)的关系:若f(x)=f(-x),偶函数;若f(x)=-f(-x),奇函数。

如:函数f(x)=x^3,定义域为R,关于原点对称;而f(-x)=(-x)^3=-x^3=-f(x),所以f(x)=x^3是奇函数.又如:函数f(x)=x^2,定义域为R,关于原点对称;而f(-x)=(-x)^2=x^2=f(x),所以f(x)=x^3是偶函数.

(4)初中数学如何求最大值最小值扩展阅读:

一般的,函数最值分为函数最小值与函数最大值。简单来说,最小值即定义域中函数值的最小值,最大值即定义域中函数值的最大值。

函数最大(小)值的几何意义——函数图像的最高(低)点的纵坐标即为该函数的最大(小)值。

最小值

设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意实数x∈I,都有f(x)≥M,②存在x0∈I。使得f (x0)=M,那么,我们称实数M 是函数y=f(x)的最小值。

最大值

设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意实数x∈I,都有f(x)≤M,②存在x0∈I。使得f (x0)=M,那么,我们称实数M 是函数y=f(x)的最大值。

一次函数

一次函数(linear function),也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。

所以,无论是正比例函数,即:y=ax(a≠0) 。还是普通的一次函数,即:y=kx+b (k为任意不为0的常数,b为任意实数),只要x有范围,即z<或≤x<≤m(要有意义),那么该一次函数就有最大或者最小或者最大最小都有的值。而且与a的取值范围有关系

当a<0时

当a<0时,则y随x的增大而减小,即y与x成反比。则当x取值为最大时,y最小,当x最小时,y最大。例:

2≤x≤3 则当x=3时,y最小,x=2时,y最大

当a>0时

当a>0时,则y随x的增大而增大,即y与x成正比。则当x取值为最大时,y最大,当x最小时,y最小。例:

2≤x≤3 则当x=3时,y最大,x=2时,y最小[3]

二次函数

一般地,我们把形如y=ax^2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数(quadratic function),其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。

注意:“变量”不同于“未知数”,不能说“二次函数是指未知数的最高次数为二次的多项式函数”。

“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在一定范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),

但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别.如同函数不等于函数关系。

而二次函数的最值,也和一次函数一样,与a扯上了关系。

当a<0时,则图像开口于y=2x&sup2; y=&frac12;x&sup2;一样,则此时y 有最大值,且y只有最大值(联系图像和二次函数即可得出结论)

此时y值等于顶点坐标的y值

当a>0时,则图像开口于y=-2x&sup2; y=-&frac12;x&sup2;一样,则此时y 有最小值,且y只有最小值(联系图像和二次函数即可得出结论)

此时y值等于顶点坐标的y值

参考资料:网络-函数最值

E. 初三数学几何最大值最小值的解法

在数学中,几何最值的计算是考试中的一个难点,解决此类计算一般可借助以下定理:

(1)利用轴对称转化为:(将两点之间的折线转化为两点之间的直线段)

两点之间的距离——两点之间,线段最短;

(2)利用三角形两边之和大于第三边,两边之差小于第三边;

(3)利用一点到直线的距离:

垂线段最短——将点到直线的折线段转化为点到直线的垂线段;

(4)利用特殊角度(30°,45°,60°)将成倍数的线段转化为首尾相连的折线段,在转化为两点之间的直线段最短;

(5)找临界的特殊情况,确定最大值和最小值 .

因此,在以上定理的基础之上,关键在于特征的转换,减少变量,从而快速高效率解题

阅读全文

与初中数学如何求最大值最小值相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:705
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1318
华为手机家人共享如何查看地理位置 浏览:1010
一氧化碳还原氧化铝化学方程式怎么配平 浏览:848
数学c什么意思是什么意思是什么 浏览:1369
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1350
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1023
大学物理实验干什么用的到 浏览:1449
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:832
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1608
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1452
数学中的棱的意思是什么 浏览:1017