导航:首页 > 数字科学 > 数学题计算的方法有哪些

数学题计算的方法有哪些

发布时间:2023-02-22 07:50:12

A. 数学速算方法有哪些

一、充分利用五大定律

教师要扎实开展好现行教材四年级数学下册中计算的五大运算定律的教学(加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律),引导学生弄清来龙去脉,不让一个学生掉队,训练每个学生能自觉运用简便办法,能针对不同题型灵活选择简便方法正确而快捷地进行计算。

二、巧妙运用首同末合十

利用首同末合十的方法来训练。首同末合十法是两个两位数,它们的十位数相同,而个位数相加的和是10。利用首同末合十的两个两位数相乘,积的右边的两位数正好是个位数的乘积,积的左面的数正好是十位上的数乘以比它大1的积,合并起来就是它们的乘积。例如,54x56=3024,81x89=7209。

三、留心左右两数合并法

任意的两位数乘上99或任意的三位数乘上999的速算法叫做左右两数合并法。

1、任意两位数乘上99的巧算方法是,将这个任意的两位数减去1,作为积的左面的两位数字,再将100减去这个任意两位数的差作为积的右边两位数,合并起来就是它们的积。例如,62x99=6138,48x99=4752。

2、任意三位数乘上999的巧算方法,就是将这个任意的三位数减去1,作为积的左面的三位数字,再将1000减去这个任意三位数的差作为积的右边的三位数字,合并起来就是它们的积。例如,781x999=780219,396x999=395604。

四、利用分数与除法的关系来巧算

在一个只有二级运算的题里,按顺序计算需要多步计算,利用乘除法的关系进行计算就会简便。比如,

24/18x36/12=(24/18)x(36/12)=24/18x36/12=4。

五、利用扩大缩小的规律进行简算

有些除法计算题直接计算比较繁琐,而且容易算错,利用扩缩规律进行合理的变形可以找到简便的解决方法。比如,

7/25=(7x4)/(25x4)=28/100=0.28,

24/125=(24x8)/(125x8)=192/1000=0.192。

B. 数学竖式计算的方法 有哪些

加法竖式计算方法:

数位对齐:个位对个位,十位对十位,加号往前移,计算先从个位算起,个位数和个位数相加,得数写在个位上,十位数与十位数相加,得数写在十位上。

减法竖式计算方法:

数位对齐,个位对个位,十位对十位,减号往前移,计算先从个位起,个位相减,得数写在个位上,十位相减,得数写在十位上。

竖式计算方法:

用竖式计算时,首先我们应该先写“厂”号;然后再写被除数,被除数应该写在“厂”号的里面;之后再写除数,除数应该写在“厂”号的左边;最后我们就开始试商了,商应该与被除数的相应数位对齐写在“厂”的上面;除数与商的积写在被除数的下面(相应数位对齐) 。

被除数减去除数和商的积所得的差就是余数,余数写在横线的下面(与上面相应的数位对齐)被除数里最多有几个除数,商是几括号里就填几。

C. 常用的数学解题方法有哪些

数学解题思想方法有哪些
一.数学思想方法总论
高中数学一线牵,代数几何两珠连;
三个基本记心间,四种能力非等闲.
常规五法天天练,策略六项时时变,
精研数学七思想,诱思导学乐无边.

一 线:函数一条主线(贯穿教材始终)
二 珠:代数、几何珠联璧合(注重知识交汇)
三 基:方法(熟) 知识(牢) 技能(巧)
四能力:概念运算(准确)、逻辑推理(严谨)、
空间想象(丰富)、分解问题(灵活)
五 法:换元法、配方法、待定系数法、分析法、归纳法.
六策略:以简驭繁,正难则反,以退为进,化异为同,移花接木,以静思动.
七思想:函数方程最重要,分类整合常用到,
数形结合千般好,化归转化离不了;
有限自将无限描,或然终被必然表,
特殊一般多辨证,知识交汇步步高.

二.数学知识方法分论:

集合与逻辑
集合逻辑互表里,子交并补归全集.
对错难知开语句,是非分明即命题;
纵横交错原否逆,充分必要四关系.
真非假时假非真,或真且假运算奇.

函数与数列
数列函数子母胎,等差等比自成排.
数列求和几多法?通项递推思路开;
变量分离无好坏,函数复合有内外.
同增异减定单调,区间挖隐最值来.

三角函数
三角定义比值生,弧度互化实数融;
同角三类善诱导,和差倍半巧变通.
解前若能三平衡,解后便有一脉承;
角值计算大化小,弦切相逢异化同.

方程与不等式
函数方程不等根,常使参数范围生;
一正二定三相等,均值定理最值成.
参数不定比大小,两式不同三法证;
等与不等无绝对,变量分离方有恒.

解析几何
联立方程解交点,设而不求巧判别;
韦达定理表弦长,斜率转化过中点.
选参建模求轨迹,曲线对称找距离;
动点相关归定义,动中求静助解析.

立体几何
多点共线两面交,多线共面一法巧;
空间三垂优弦大,球面两点劣弧小.
线线关系线面找,面面成角线线表;
等积转化连射影,能割善补架通桥.

排列与组合
分步则乘分类加,欲邻需捆欲隔插;
有序则排无序组,正难则反排除它.
元素重复连乘法,特元特位你先拿;
平均分组阶乘除,多元少位我当家.

二项式定理
二项乘方知多少,万里源头通项找;
展开三定项指系,组合系数杨辉角.
整除证明底变妙,二项求和特值巧;
两端对称谁最大?主峰一览众山小.

概率与统计
概率统计同根生,随机发生等可能;
互斥事件一枝秀,相互独立同时争.
样本总体抽样审,独立重复二项分;
随机变量分布列,期望方差论伪真.

D. 初中数学里常用的几种解题方法介绍

1、配方法

所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方 法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等 式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法

因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等 的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、 换元、待定系数等等。

3、换元法

换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法 初中政治,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理

一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2—4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法

在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

6 、构造法

在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等 价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学 知识互相渗透,有利于问题的解决。

7、反证法

反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯 定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分 为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂 直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有 两个;唯一/至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

8、面积法

平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的.一种常用方法。

用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面 积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

9、几何变换法

在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映 射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点 渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:(1)平移;(2)旋转;(3)对称。

10。客观性题的解题方法

选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。

填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。

要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。

(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。

(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。

(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。

(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。

(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。

(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。

E. 做数学题的方法

做数学题的方法

做数学题的方法,数学题对于很多人来说应该是非常难的题吧,有的人怎么做也做不来数学题,花了大量的时间精力也做不出来,那么有哪些做数学题的方法呢?赶紧阅读本篇文章,来了解一下吧。

做数学题的方法1

几何解题技巧考点:

这类题主要是考察咱们对空间物体的感觉,希望大家在平时学习过程中,多培养一些立体的、空间的感觉,将自己设身处地于那么一个立体的空间中去,这类题对文科生来说,难度都比较简单,但是对理科生来说,可能会比较复杂一些,特别是在二面角的求法上,对理科生来说是一个巨大的挑战,它需要理科生能对两个面夹角培养出感情来,这样辅助线的做法以及边长的求法就变得如此之简单了。这种题型分为两类:第一类就是证明题,也就是证明平行(线面平行、面面平行),第二类就是证明垂直(线线垂直、线面垂直、面面垂直);第二就是计算题,包括棱锥体的体积公式计算、点到面的距离、有关二面角的计算(理科生掌握)

证线面平行如直线与面有两种方法:

一种方法是在面中找到一条线与平行即可(一般情况下没有现成的线存在,这个时候需要我们在面做一条辅助线去跟线平行,一般这条辅助线的作法就是找中点);另一种方法就是过直线作一个平面与面平行即可,辅助面的作法也基本上是找中点。证面面平行这类题比较简单,即证明这两个平面的两条相交线对应平行即可。

做数学题的方法2

圆锥曲线解题技巧:

这类题型,其实难度真的不是很大,我个人理解主要是考大家的计算能力怎么样,还有就是对题目的理解能力,同时也希望大家都能明白圆锥曲线中a,b,c,e的含义以及他们之间的关系,还有就是椭圆、双曲线、抛物线的两种定义,如果你现在还不知道,趁早去记一下,不然考试的时候都不知道的哈。这种类型的题一般都是以下几种出法:第一个问一般情况就是求圆锥曲线方程或者就是求某一个点的轨迹方程,第二个问一般都是涉及到直线的问题,要么就是求范围,要么就是求定值,要么就是求直线方程解题思路:

求圆锥曲线方程:

一般情况下题目有两种求法,一种就是直接根据题目条件来求解(如题目告诉你曲线的离心率和过某一个点坐标),另一种就是隐含的告诉我们椭圆的定义,然后让我们去琢磨其中的意思,去写出曲线的方程,这种问法就比较难点,其实也主要是看我们的基本功底怎么样,对基础扎实的同学来说,这种问法也不是问题的。求轨迹方程:这种问题需要我们首先对要求点的坐标设出来A(x,y),然后用A点表示出题目中某一已知点B的坐标,然后用表示出来的点坐标代入点B的`轨迹方程中,这样就可以求出A点的轨迹方程了,一般求出来都是圆锥曲线方程,如果不是,你就可能错了。

函数导数解题技巧:

这种类型的题主要是考大家对导数公式的应用,导数的含义,明确导数可以用来干什么,如果你都不知道导数可以用来干什么,你还谈什么做题呢。在导数这块,我是希望大家都能尽量的多拿一些分数,因为其难度不是很大,主要你用心去学习了,记住方法了,这个分数对我们来说都是可以小菜一碟的。最值、单调性(极值)、未知数的取值范围(不等式)、未知数的取值范围(交点或者零点)

最值、单调性(极值):

首先对原函数求导,然后令导函数为零求出极值点,然后画出表格判断出在各个区间的单调性,最后得出结论。未知数的取值范围(不等式),其实它就是一种一种变相的求最值问题,不知道大家还记得么,记住我讲课的表情,未知数放在一边,把已知的数放在另外一边,求出相应的最值,咱们就胜利了,这个种看起来很复杂,其实很简单,你说呢。

未知数的取值范围(交点或者零点):

这种要是没有掌握方法的人,觉得,哇,怎么就那么难呀,其实不然,很简单的,只是各位你要明确这种题的解题思路哈。首先还是需要我们把要求的未知数放在一边,把知道的数放在一边去,这样去求出已知数的最值,然后简单的画一个图形我们就可以分析出未知数的取值范围了。

F. 数学快速计算有哪些方法

乘法口诀你自然要背很熟了,否侧一切都是浮云。平时多记记下平方公式,在计算时非常有用的,其他的还是多练练,就到这里吧,下面是个简单的方法:

1、十几乘十几:
口诀:头乘头,尾加尾,尾乘尾。
例:12×14=?
解:
1×1=1

2+4=6

2×4=8

12×14=168
注:个位相乘,不够两位数要用0占位。
2.头相同,尾互补(尾相加等于10):
口诀:一个头加1后,头乘头,尾乘尾。
2、例:23×27=?
解:2+1=3
2×3=6
3×7=21

23×27=621
注:个位相乘,不够两位数要用0占位。
3、第一个乘数互补,另一个乘数数字相同:
口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4

4×4=16

7×4=28

37×44=1628
注:个位相乘,不够两位数要用0占位。
4.几十一乘几十一:
口诀:头乘头,头加头,尾乘尾。
4、例:21×41=?
解:2×4=8

2+4=6

1×1=1

21×41=861
5、11乘任意数:
口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5

3+1=4

1+2=3

2+5=7

2和5分别在首尾

11×23125=254375

注:和满十要进一。
6、十几乘任意数:

口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?
解:13个位是3

3×3+2=11

3×2+6=12

3×6=18

13×326=4238

注:和满十要进一。

G. 数学简便计算,有哪几种方法

一、整体简便计算。整个一道算式可以用简便方法计算,这种形式最为常见。例如:=1.14×10=11.4二、局部简便计算。一道算式中局部可以进行简便计算,这种形式也不少见。三、中途简便计算。开始计算并不能简便计算,而经过一两步后却能进行简便计算,这种情况最容易忽视。例如:=1.2×(1+5+4)=1.2×10=12四、重复简便计算。在一道题里不止一次地进行简便计算,这种情况往往不注意后一次简便计算。例如:=8×55×0.125=8×0.125×55第二次=1×55=55一简算的根据a、乘法运算定律b、加法运算定律c、减法、除法的运算性质二简算的类型a、直接简算b、部分简算c、转化简算d、过程简算三简算的几种公式:加法:a+b+c=a+(b+c)(加法结合律)乘法:a×b×c=a×c×b(乘法交换律)a×b×c=a×(b×c)(乘法结合律)(a+b)×c=ac+bc或(a-b)×c=ac-bc(乘法分配律)减法:a-b-c=a-c-b(减法交换律)a-b-c=a-(b+c)(减法结合律)除法:a÷b÷c=a÷c÷b(除法交换律)a÷b÷c=a÷(b×c)(除法结合律)(a+b)÷c=a÷c+b÷c或(a-b)÷c=a÷c-b÷c(除法分配律)注意除法分配率只有在被除数是两个数的差或和的情况下才能进行分配希望帮到你望采纳谢谢加油

H. 数学简便计算,有哪几种方法

数学简便计算方法:

一、运用乘法分配律简便计算

简便计算中最常用的方法是乘法分配律。乘法分配律指的是:

ax(b+c)=axb+axc

cx(a-b)=axc-bxc

例1:38X101,我们要怎么拆呢?看谁更加的靠近整百或者整十,当然是101更好些,那我们就把101拆成100+1即可。

38X101

=38X(100+1)

=38X100+38X1

=3800+38

=3838

例2:47X98,这样该怎么拆呢?要拆98,使它更接近100。

47X98

=47X(100-2)

=47X100-47X2

=4700-94

=4606

二、基准数法

在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。

例:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

=10310+1

=10311

三、加法结合律法

对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。

例:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

=30

四、拆分法

顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改变数的大小哦!

例:

3.2×12.5×25

=8×0.4×12.5×25

=8×12.5×0.4×25

=1000

五、提取公因式法

这个方法实际上是运用了乘法分配律,将相同因数提取出来。

例:

0.92×1.41+0.92×8.59

=0.92×(1.41+8.59)

=9.2

I. 一共可以有多少种不同的数学计算方法

计算公式如下:

公式A是排列公式,从N个元素取M个进行排列(即排序)。

排列数公式就是从n个不同元素中,任取m(m≤n)个元素(被取出的元素各不相同),按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。排列与元素的顺序有关,组合与顺序无关。加法原理和乘法原理是排列和组合的基础。

两个基本原理是排列和组合的基础

(1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。

(2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。

J. 数学简便计算,有哪几种方法

主要有六大方法:

  1. “凑整巧算”——运用加法的交换律、结合律进行计算。

  2. 运用乘法的交换律、结合律进行简算。

  3. 运用减法的性质进行简算,同时注意逆进行。

  4. 运用除法的性质进行简算 (除以一个数,先化为乘以一个数的倒数,再分配)。

  5. 运用乘法分配律进行简算。

  6. 混合运算(根据混合运算的法则)。

阅读全文

与数学题计算的方法有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:736
乙酸乙酯化学式怎么算 浏览:1400
沈阳初中的数学是什么版本的 浏览:1346
华为手机家人共享如何查看地理位置 浏览:1038
一氧化碳还原氧化铝化学方程式怎么配平 浏览:880
数学c什么意思是什么意思是什么 浏览:1404
中考初中地理如何补 浏览:1294
360浏览器历史在哪里下载迅雷下载 浏览:697
数学奥数卡怎么办 浏览:1383
如何回答地理是什么 浏览:1018
win7如何删除电脑文件浏览历史 浏览:1050
大学物理实验干什么用的到 浏览:1480
二年级上册数学框框怎么填 浏览:1695
西安瑞禧生物科技有限公司怎么样 浏览:958
武大的分析化学怎么样 浏览:1243
ige电化学发光偏高怎么办 浏览:1333
学而思初中英语和语文怎么样 浏览:1646
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1481
数学中的棱的意思是什么 浏览:1053