导航:首页 > 数字科学 > 教学如何体现数学化思想

教学如何体现数学化思想

发布时间:2023-02-23 06:59:10

㈠ 如何在数学教学过程中体现数学思想

一、在概念、定理、公式、法则教学中渗透数学思想方法
数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。教师讲不讲,讲多讲少,随意性较大,常常因教学时间紧而将它作为一个“软任务”挤掉。对于学生的要求是能领会多少算多少。因此,作为教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。例如:在立几“空间的角”的教学中,教师不要简单下定义,应当引导学生领悟“两异面直线所成的角”“直线与平面所成的角”“平面与平面所成的角”的形成隐含的“转化思想”,使学生认识到将空间问题转化为平面问题是学习立几的基本思想方法。又如在“一元二次不等式的解法”的教学中,教师要挖掘一元二次不等式的解法与二次函数的图象、一元二次方程的关系。教师可作如下引导:(ax2+bx+c>0,a>0为例)(1)一元二次不等式ax2+bx+c>0与二次函数的解析式有何联系?(2)设y=ax2+bx+c,那么ax2+bx+c>0的意义是什么?(3)函数值y>0表明函数图象与x轴有什么关系?(4)函数图象在x轴上方要满足什么条件?这样使学生感受到一元二次不等式的解的情况实际上是二次函数图象与x轴的位置关系的情况,渗透了数形结合的思想方法。
显然上述的教学活动中,由于让学生亲自参与问题的探索过程,从而大大激发学生的求知兴趣。并使学生在学习和探索中感受和领会。

㈡ 教学设计如何体现数学思想和方法

1、教学设计如何体现数学思想和方法
数学思想方法作为基础知识的重要组成部分,但又有别于基础知识。除基本的数学方法外,其他思想方法都呈隐蔽形式,渗透于学习新知识和运用知识解决问题的过程中。今天,朴新小编给大家带来教学设计如何体现数学思想和方法.
在问题的解决过程中渗透数学思想方法
问题解决是以思考为内涵,以问题目标为定向的心理活动,是在新情境下通过思考去实现学习目标的活动,“思考活动”和“探索过程”是问题解决的内核。数学领域中的问题解决,与其他科学领域用数学去解决问题不同。数学领域里的问题解决,不仅关心问题的结果,而且还关心求得结果的过程,即问题解决的整个思考过程。数学问题解决是按照一定的思维对策进行的思维过程。在数学问题解决的过程中,既运用抽象、归纳、类比、演绎等逻辑思维形式,又运用直觉、灵感(顿悟)等非逻辑思维形式来探索问题的解决办法。

问题是数学的心脏,数学问题的解决过程,实质是命题的不断变换和数学思想方法的反复运用过程。数学思想方法是数学问题的解决观念性成果,它存在于数学问题的解决之中。数学问题的步步转化,无不遵循数学思想方法指示的方向,因此,通过问题解决,可以培养学生的数学意识,构造数学模型,提供数学想象;加以实际操作,诱发创造动机,可以把数学嵌入活的思维活动之中,并不断在学数学、用数学的过程中,引导学生学习知识、掌握方法、形成思想,促进思维能力的发展。 数学问题的解决过程是用“不变”的数学思想和方法去解决不断“变换”的数学命题,在数学问题的解决过程中渗透数学思想和方法,不仅可以加快和优化问题解决的过程,而且还可以达到举一反三,触类旁通的效果。
在复习与小结中提炼、概括数学思想方法
小结与复习是数学教学的一个重要环节,揭示知识之间的内在联系以及归纳、提炼知识中蕴含的数学思想方法是小结与复习的功能之一。数学的小结与复习,不能仅停留在把已学的知识温习记忆一遍的要求上,而要去努力思考新知识是怎样产生、展开和证明的,其实质是什么?怎样应用它等。小结与复习是对知识进行深化、精炼和概括的过程,它需要通过手和脑积极主动地开展活动才能达到。因此,在这个过程中,提供了发展和提高能力的极好机会,也是渗透数学思想方法的极好机会与途径。
学生学完一个单元的内容,应在整体上对该单元的内容有一个清晰、全面的认识。因此,在小结与复习时,应提炼、概括这一单元知识所涉及的数学思想方法;并从知识发展的过程来综观数学思想方法所起的作用,以新的更为全面的观点分析所学知识;从数学思想方法的角度进行提高与精练。由于同一内容可体现不同的数学思想方法,而同一数学思想方法又常常蕴藏在许多不同的知识点里,因此,在小结与复习时,还应从纵横两方面整理出数学思想方法及其系统。

2、数学教学体现数学思想和方法
(1)渗透“方法”,了解“思想”。由于初中学生数学知识比较贫乏,抽象思想能力也较为薄弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础。因而只能将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。忽视或压缩这些过程,一味灌输知识的结论,就必然失去渗透数学思想、方法的一次次良机。如初中代数课本第一册《有理数》这一章,与原来部编教材相比,它少了一节――“有理数大小的比较”,而它的要求则贯穿在整章之中。在数轴教学之后,就引出了“在数轴上表示的两个数,右边的数总比左边的数大”,“正数都大于0,负数都小于0,正数大于一切负数”。而两个负数比大小的全过程单独地放在绝对值教学之后解决。教师在教学中应把握住这个逐级渗透的原则,既使这一章节的重点突出,难点分散;又向学生渗透了形数结合的思想,学生易于接受。

在渗透数学思想、方法的过程中,教师要精心设计、有机结合,要有意识地潜移默化地启发学生领悟蕴含于数学之中的种种数学思想方法,切忌生搬硬套,和盘托出,脱离实际等错误做法。比如,教学二次不等式解集时结合二次函数图象来理解和记忆,总结归纳出解集在“两根之间”、“两根之外”,利用形数结合方法,从而比较顺利地完成新旧知识的过渡。
(2)训练“方法”,理解“思想”。数学思想的内容是相当丰富的,方法也有难有易。因此,必须分层次地进行渗透和教学。这就需要教师全面地熟悉初中三个年级的教材,钻研教材,努力挖掘教材中进行数学思想、方法渗透的各种因素,对这些知识从思想方法的角度作认真分析,按照初中三个年级不同的年龄特征、知识掌握的程度、认知能力、理解能力和可接受性能力由浅入深,由易到难分层次地贯彻数学思想、方法的教学。如在教学同底数幂的乘法时,引导学生先研究底数、指数为具体数的同底数幂的运算方法和运算结果,从而归纳出一般方法,在得出用a表示底数,用m、n表示指数的一般法则以后,再要求学生应用一般法则来指导具体的运算。在整个教学中,教师分层次地渗透了归纳和演绎的数学方法,对学生养成良好的思维习惯起重要作用。

3、活跃数学课堂气氛
1.语言要亲切,富有感情,使学生产生好学之乐
要使学生始终保持积极的学习心态,具有饱满的学习热情,在教学的过程中,教师就要 使用亲切感人的课堂教学语言,以此来保证教学效果。教师在教学过程中对待一些差生,要 维护他们的自尊心,不要对学生进行过多地指责、讽刺、挖苦,否则,长此以往会使学生丧 失学习数学的信心。要让学生主动参与学习,就要给学生适当的鼓励。在教学过程中,教师 让学生回答问题的时候,可以多使用积极鼓励性的语言对学生进行评价,让学生有信心去学, 使他们获得学习的成就感,进而让学生产生学习的兴趣,由于数学比较抽象,难懂,逻辑性 较强,所以在教学中教师要用语言营造一种具有趣味性的学习氛围,激发学生的学习兴趣, 让学生积极主动地去学习数学。
2.快乐实践——让数学课堂生活化、探究化

实践是创造的源泉。脱离了实践活动的数学将成为无源之水,无本之木。现代教育思想认为:数学教学应该是数学活动的教学,学生的思维活动只有通过数学活动才有可能被激活,才能迸射出创新的火花。因此,在实际教学中就要把课堂知识的学习和社会体验结合起来,使学生的学习渠道多样化,学习的方式生活化,用动手实践这把"钥匙"开启学生紧闭的心智,唤醒学生沉睡的潜能,激活学生封存的记忆,放飞学生囚禁的情愫,让学生在动手实践中对知识的认识和体验不断深化、丰满、鲜活起来。

3.创设情景调动课堂气氛

从心理学的角度来讲,小学生有着好奇心理、疑问心理、爱美心理和活泼好动的特点。作为老师因从这些方面多去思考,充分的发挥小学生非智力因素在学习中的作用。在课堂中创设出学与"玩"交融为一体的教学方法,使学生在"玩"中学,在学中"玩"的情景。在课堂上创造情景的方法有很多,我们要根据自己班级学生的实际情况选择合适的方法,提供具体的内容,生动活泼的形式,新奇动人的事物,以恰当的手法表现出来,让学生真正的体会到其中的乐趣。如我在教作文《记一次游戏》时,我创设了这样一个课堂情景。我与学生一起玩贴鼻子的游戏,自然,这个游戏其乐无穷,学生个个开怀大笑。在游戏中,我让学生仔细观察游戏过程以及人物的语言、动作、神态,同时谈谈自己的体会或感触,一节课里学生的热情始终高涨。这样,既解决了学生写作文"写什么","怎样写"两大老大难问题,又提高了学生的学习兴趣,这样课堂气氛会更活跃些的。

4、学习数学的兴趣激发
让学生享受成功的愉快,让学生感受成功的快乐
心理学家研究表明,兴趣能够让学生走向成功。教师要让学生在不断获得成功以后收获幸福和快乐的感受,产生学习的成就感,产生对学习的快乐的感受,并走向更多的成功,获得一次又一次的成功,并激发学生持久的学习兴趣。教师要从学生的实际情况出发,创造学生自由竞争的机会,鼓励不同层次的学生都获得不同程度的成功,让学生都能够跳跃起来摘桃子,收获学生学习的信心。教师可以创造机会,让学生解答不同的难题,并让学生完成不同的学习难题。
教师要教育学生面向全体学生,做到因材进行教育,让每个学生都获得成功的感受,让每个学生都收获学习的幸福。在教学过程中,教师要教育学生注意学习的深度,注意学习的精准性,注意学习的速度,教师要重视精讲,让学生精练,教师要在课堂上将每节课的难点都讲解结束,教师也要根据学生学科的特点,对学生进行分层教学。教师要让学生进行大胆地学习实践,满足学生深入研究题目的本质的特点,并要求学生在教师的指导下,完成数学学习任务,并对学生的学习潜能加以激发,鼓励增加练习的环节,重视分清楚作业的要求,让学生做好基本题的基础上,更多地完成任务的题目,并设计好教学的过程,引导学生思考质量高的题目。
教师要运用数学美,来增长学生的学习潜能
数学美不同于自然美和艺术美,教师的教学中所展现的数学美主要是内在的美,逻辑的美和理智的美,而数学其实还包含着隐藏的美,深邃的美和思想内容的美等。教师要引导学生去领悟去发现数学的美,通过抽象数学符号的运用,数学公式和数学定理的运用引导学生探究数学学习思想,开展智力活动,丰富学生的情感。数学教师要引导学生深入剖析数学的情感,激发学生数学学习兴趣,教育学生有效掌握数学学习内容,提升学生的数学学习的能力,发展学生的数学创造能力,实现数学教学的价值。

教师要引导学生学会发现,理解数学的游戏功能,并通过数学学习锻炼学生的头脑,让学生探究数学世界的奥秘,让学生感受数学活动的美。教师要利用数学教材的美,让学生探究数学的美,激发学生的数学学习动机和数学学习兴趣,引导学生积极思考,充分感受数学的美,追求数学的美。在数学教师提出问题的时候,教师要让学生充分感受数学的美,吸引学生学习的兴趣,在学生分析问题的时候,教师要让学生感受到数学思维的质量,引导学生去掌握数学学习的奥秘,在进行数学小结的时候,教师要让学生研究数学的和谐的统一的简洁的美,以此来减轻学生的数学学习负担,让学生充分感受数学知识结构的精彩。

㈢ 如何在教学实践中贯彻体现数学思想

《领悟数学思想方法,让课堂绽放魅力,让学生展现风采》——小学数学教学中渗透数学思想方法思考与实践汇报:兆麟小学农丰小学兰陵小学今天由我们三人汇报的题目是:《领悟数学思想方法,让课堂绽放魅力,让学生展现风采》中国科学院院士、着名数学家张景中曾指出:“小学生学的数学很初等,很简单。但尽管简单,里面却蕴含了一些深刻的数学思想。”数学知识和数学思想方法作为小学数学学习的两条线索,一明一暗,相互支撑,其中数学思想方法提示了数学的本质和发展规律,可以说是数学的精髓。下面我们就谈谈数学思想方法。一、为什么要在教学中渗透数学思想方法1、基本数学思想方法对学生的发展具有重要意义一位教育学家曾指出:“作为知识的数学出校门不到两年可能就忘了,惟有深深铭记在头脑中的是数学煌精神和数学的思想、研究方法、着眼点等,这些随时随地发生作用使学生终身受益。”数学的思想方法是数学的灵魂和精髓,掌握科学的数学思想方法对提升学生思维品质,对数学学科的后继学习,对其他学得的学习,乃至学生的终身发展有十分重要的意义。在小学数学教学中有意识地渗透一些基本数学思想方法,是增强学生数学观念,形成良好思维素质的关键。不仅能使学生领悟数学的真谛,懂得数学的价值学会数学地思考和解决问题,还可以把知识的学习与能力的培养、智力的发展有机地统一起来。2.渗透基本数学思想方法是落实新课标精神的需求数学课程标准把“四基”:基本知识、基本技能、基本思想、基本活动经验作为目标体系。基本思想是数学学习的目标之一,其重要性不言而喻。新教材是把一些重要的数学思想方法通过学生日常生活中最简单的事例呈现出来,并运用操作、实验等直观手段解决这些问题。从而加深学生对数学概念、公式、定理、定律的理解,提高学生数学能力和思维品质,这是数学教育实现从传授知识到培养学生分析问题、解决问题能力的重要途径,也是小学数学新课程改革的真正内涵之在。二、课教材渗透了哪些数学思想小学数学中最上位的思想就是演绎和归纳,是数学教学的主线。还有一些常用的数学思想方法:对应思想、——是指对两个集合元素之间联系的把握。许多数学方法来源于对应思想。比如学生在计算练习时常常有10?20×2?30?40?50?形式出现,这其实就体现了对应的思想。如数轴上的一个点就对应一个数,任何一个数都能在数轴上找到相对应的点,一一对应,呈现完美。符号化思想、——数学发展到今天,已成为一个符号的世界。英国着名数学家素曾说:“什么是数学?数学就是符号加逻辑。”符号化思想即指人们有意识地、普遍地运用符号化的语言去表述研究的对象。符号化思想在整个小学都有较多的渗透,例如:阿拉伯数字:1、2、3、5、6、……+、–、、等运算符号;>、<、=、等表示关系的符号;()、[]等括号;表示数的字母:x、y、z等。字母表示公式:长方形、正方形的面积S=abS=a²字母表示计量单位符号:m\cm\dm\mm\g\km等。集合思想——把一组对象放在一起作为讨论的范围,这就是集合的思想。如:一年级教材在教孩子认数的时候,用一个圈把一些图画圈在里面,这就是孩子最初所接触到集合雏形,也是第一次对小学生渗透这种集合思想。在以后后的教学中慢慢体现并集、差集、空集等思想。极限思想——我国古代就对极限思想的思考,古代杰出的数学家刘徽的“割圆术”就是利用极奶子思想的典型。极限思想是研究变量在无限变化中的变化趋势的思想,运用这一思想,人们的思维可以从有限空间向无限空间,从静态向动态发展,从具体到抽象升华。统计思想——小学数学中的统计思想主要体现在:简单的数据整理和求平均数,简单的统计表和统计图,学生在会整理、制表、作图的同时要能从数据、图表中发现数学问题和数学信息,得出相关的结论。、假设思想——是先对题目标中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。比较思想——是数学教学中常见的思想方法之一,也是促进学生思维发展的手段。在数学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快找到解题途径。类比思想——是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边行面积公式和三角形面积公式。这种思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。转化思想——是一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到。分类思想——体现对数学对象的分类及其分类的标准如自然数的分类,三角形按边分按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。数形结合思想——数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的帮助分析数量关系。代换思想——他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?可逆相思——它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题的方法,有时可以代线段图逆推。如:一辆汽车从甲地开往乙地,第一小时行了1/7,第二小时比第一小时多行了16千米,还有94千米,求甲乙之距。化归思想方法——把有可能解决或示解决的问题,通过转化过程,归结为一类以便解决可较易解决的问题,以求得解决,这就是“化归”。而数学知识联系紧密,新知识往往是旧知识的引申和扩展。让学生面对新知会用化归思想方法去思考问题,对独立获得新知能力的提高无疑是有很大帮助。变中抓不变的思想方法——在纷繁复杂的变化中如何把握数量关系,抓不变的量为突破口,往往问了就迎刃而解,如:科技书和文艺书共630本,其中科技书20%,后来又买来一些科技书,这时科技书占30%,又买来科技书多少本?数学模型的思想方法——是对于现实世界的某一特定对象,从它特定的生活原型出发,充分运用观察、实验、操作、比较、分析等过程,得到简化和假设,它是生活中实际问题转化为数学问题模型的一种思想方法。培养学生用数学的眼光认识和处理周围或数学问题乃数学的最高境界,也是学生高数学素养所追求的目标。这些数学思想方法是数学的本质之所在、是数学的精髓,只有方法的掌握、思想的形成,才能使学生受益终生。下面我们就结合自己对数学思想方法的学习与实践,与大家一起交流。三、让课堂彰显思想的魅力首先说说备课:备课时要研读教材、明确目标、设计预案,充分挖掘数学思想方法如果课前教师对教材内容的教学适合渗透哪些思想方法一无所知,那么课堂教学就不可能有的放矢。因此我们在备课时,不应只见直接写在教材上的数学基础知识与技能,而是要进一步钻研教材,创造性地使用教材,挖掘隐含在教材中的数学思想方法,并在教学目标中明确写出渗透哪些数学思想方法,并设计数学活动落实在教学预设的各个环节中,实现数学思想方法有机地融合在数学知识的形成过程中。其实,每册教材都有数学思想方法的渗透,我们每册选取有代表性的单元。这相对所有教学内容只是冰山一角。为此,我在研读教材时,常常要多问自己几个为什么,将教材的编排思想内化为自己的教学思想,如:怎样让学生经历知识的产生与发展的过程?怎么样才能唤起学生进行深层次的数学思考?如何激发学生主动探究新知识的积极性?如何依据教材适时地渗透数学思想方法等等。只有我自己做到胸有成竹,方能给学生渗透相应的数学思想。2上课:创设情境、建立模型、解释应用,渗透数学思想方法数学是知识与思想方法的有机结合,没有不包含数学思想方法的数学知识,也没有游离于数学知识之外的数学思想方法。这就要求教师在课堂教学中,在揭示数学知识的形成过程中渗透数学思想方法,在教给学生数学知识的同时,也获得数学思想方法上的点化。教师积极地在课堂中渗透数学思想方法,体现了教师在教学中的大智慧,也为学生的学习开辟了一个广阔的新天地。不同的教学内容,不同的课型,可据其不同特点,恰当地渗透数学思想方法。以下面三种课型为例。①新授课:探索知识的发生与形成,渗透数学思想方法如在《三角形分类》一课中,教师给学生提供了三角形学具先放手让学生在小组合作中尝试对三角形进行分类,学生从关注三角形的角与边的特征入手,借助学具看一看、比一比、量一量、分一分、想一想,寻找特征、抽象共性,在比较中将具有相同特征的三角形归为一类,在分类中抽象出图形的共同特征。这样的教学,学生经历了三角形分类的过程,渗透了分类、集合的思想,丰富了分类活动的经验,形成分类的基本策略,发展了归纳能力。在数学教学中,解题是最基本的活动形式。任何一个问题,从提出直到解决,需要具体的数学知识,但的是依靠数学思想方法。因此,在数学问题的探究发现过程中,要精心挖掘数学的思想方法。如我在教学三年级“植树问题”时,首先呈现:在一条100米长的路的一侧,如果两端都种,每2米种一棵,能种几棵?面对这一挑战性的问题,学生纷纷猜测,有的说种50棵,有的说种51棵。到底有几棵?我们能否从“种2、3棵……”出发,先来找一找其中的规律呢?随着问题的抛出,学生陷入了沉思。如果把你们的一只手5指叉开看作5棵树,每两棵树之间就有一个“间隔”(板书),一共有几个间隔?学生若有所思地回答是4个。如果种6棵、7棵……,棵数与间隔的个数有怎样的关系呢?于是我启发学生通过动手摆一摆、画一画、议一议,发现了在两端都种时棵数和间隔数之间的数量关系(棵数=间隔数+1),顺利地解决了上述问题。然后又将问题改为“只种一端、两端不种时分别种几棵”,学生运用同样的方法兴趣盎然地找到了答案。以上问题解决过程给学生传达这样一种策略:当遇到复杂问题时,不妨退到简单问题,然后从简单问题的研究中找到规律,最终来解决复杂问题。通过这样的解题活动,渗透了探索归纳、数学建模的思想方法,使学生感受到思想方法在问题解决中的重要作用。因此,教师对数学问题的设计应从数学思想方法的角度加以考虑,尽量安排一些有助于加深学生对数学思想方法体验的问题,并注意在解决问题之后引导学生进行交流,深化对解题方法的认识。②练习课:经历知识的巩固与应用,渗透数学思想方法数学知识的巩固,技能的形成,智力的开发,能力的培养等需要适量的练习才能实现。练习课的练习不同于新授课的练习,新授课中的练习主要是为了巩固刚学过的新知,习题侧重于知识方面;而练习课中的练习则是为了在形成技能的基础上向能力转化,提高学生运用知识解决实际问题的能力,发展学生的思维能力。因此教师要有数学思想方法教学意识,在练习课的教学中不仅要有具体知识、技能训练的要求,而且要有明确的数学思想方法的教学要求。例如在《6的乘法口诀》练习课中,学生在完成想一想、算一算的练习中,先让学生计算,再通过交流自己的算法,以“7×6+6”为例,借助图片用课件演示来理解式子的意义,运用数形结合启发将式子转化为8×6来计算,渗透变换的思想,懂得两个式子形式虽不同,表示的意义以及结果是相同的。又如让学生算一算每个图中各有多少个格子,之后教师要启发学生怎样将图形转化成同第一个图形那样的图形,可以直接用口诀计算?学生通过实际操作,动手剪一剪、拼一拼,转化成长方形后分别用6×3、4×3来计算,从而感受到转化思想的魅力。“咱们要教给孩子们什么?”“数学的学习主要是学习思想和方法以及解题的策略”,因此我们要在练习的过程中不断地总结和探索,从中寻找共性,呈现给孩子最有价值、最本质的东西——数学思想方法。如我在教学四年级“看谁算得巧”一课时,学生计算“1100÷25”主要采用了以下几种方法:①竖式计算②1100÷25=(1100×4)÷(25×4)③1100÷25=1100÷5÷5④1100÷25=11×(100÷25)⑤1100÷25=1100÷100×4⑥1100÷25=1000÷25+100÷25。在学生陈述了各自的运算依据后,引导学生比较上述方法的异同,结果发现方法①是通法,方法②——⑥是巧法。方法②——⑥虽各有千秋,方法③、④、⑥运用了数的分拆,方法②属等值变换,方法⑤类似于估算中的“补偿”策略,但殊途同归,都是抓住数据特点,运用学过的运算定律、性质转化为容易计算的问题。学生对各种方法的评价与反思,就是去深究方法背后的数学思想,从而获得对数学知识和方法的本质把握。新课程所倡导的“算法多样化”的教学理念,就是让学生在经历算法多样化的学习过程中,通过对算法的归纳与优化,深究背后的数学思想,最终能灵活运用数学思想方法解决问题,让数学思想方法逐步深入人心,内化为学生的数学素养。③复习课:学会知识的整理与复习,强化数学思想方法复习有别于新知识的教学。它是在学生基本掌握了一定的数学知识体系、具备了一定的解题经验,学生基本认识了某些数学思想方法的基础上的复习数学。数学思想方法总是隐含在数学知识中,它与具体的数学知识结合成一个有机整体,但它却无法像数学知识那样编为章节来教学,而是渗透于全部的小学数学知识中。不同章节的数学知识往往蕴含着不同的数学思想方法,有时在一章或一单元的教学中,又涉及很多的数学思想方法。因此教师在上复习课前,教师要能总体把握教材中隐含的思想方法,明确前后知识间的联系,做到“瞻前顾后”,并把数学思想方法的渗透落实到教学计划中。复习时,除了帮助学生掌握好知识与技能,形成良好的认知结构外,还必须加强数学思想方法的渗透,适时地对某种数学思想方法进行揭示、概括和强化,对它的名称、内容及其运用等予以点拨,使学生从数学思想方法的高度把握知识的本质和内在的规律,逐步体会数学思想方法的价值。数学思想方法随着学生对数学知识的深入理解表现出一定的递进性。在课堂小结、单元复习和知识运用时,教师要引导学生自觉地检查自己的思维活动,反思自己是怎样发现和解决问题的,运用了哪些基本的思想方法等,及时对某种数学思想方法进行概括与提炼,使学生从数学思想方法的高度把握知识的本质,提升课堂教学的价值。如我在教学五年级“平面图形的面积复习”时,让学生写出各种平面图形(长方形、正方形、平行四边形、三角形、梯形和菱形)的面积计算公式后提问:这些计算公式是如何推导出来的?每位同学选择1~2种图形,利用学具演示推导过程,然后在小组内交流。交流之后我又指出:你能将这些知识整理成知识网络吗?当学生形成知识网络后(如下图),再次引导学生将这些平面图形面积计算。如在复习多边形的面积推导时,教师可引导学生思考:平行四边形、三角形、梯形的面积计算公式各是怎样推导的?有什么共同点?让学生提炼概括:学习平行四边形面积计算时,我们应用割补法把它转化成学过的长方形来推导;学习三角形和梯形的面积计算时,我们用两个完全相同的图形来拼合或把一个图形割补转化成学过的图形来推导……经过系列概括提炼,学生得出其中重要的思想方法——转化思想。学生一旦掌握了数学思想方法,不仅能使学生的知识结构更完善,还特别有助于今后的学习和运用。因为掌握了数学的思想方法,学生面对新的问题时将懂得怎样去思考,真正实现质的“飞跃”。(3)作业:掌握知识、形成技能、发展智力,应用数学思想方法精心设计作业也是渗透数学思想方法的一条途径。把作业设计好,设计一些蕴含数学思想方法的题目,采取有效的练习方式,既巩固了知识技能,又有机地渗透了数学思想方法,一举两得。为此教师布置作业要有讲究,在学生作业后,要不失时机地恰当地点评,让学生不仅巩固所学知识、习得解题技能,更重要的是能悟出其中的数学规律、数学思想方法。再如一位六年级老师布置了下面这道课后思考题。在作业讲评中,教师不仅要给出答案,更重要的是启发学生思考:你是怎样算的?是怎么想的?其中运用了什么思想方法?结合上图引导学生概括出其中的思想与方法:类比思想、数学建模思想、极限的思想、数形结合的思想。(4)课外:培养兴趣、增长见识、培养能力,提升数学思想方法学校开展数学课外活动是课内教学的重要补充。根据学生的学习水平在年段里开设有关数学思想方法内容的讲座,如果平时教学中的数学思想方法的点滴渗透是“美味点心”的话,那么专题讲座对学生来说就是“丰盛大餐”了,学生比较系统地了解了常见的数学思想方法以及应用,拓展学生的眼界;数学思想方法的渗透和数学课外实践活动相结合可以使二者相得益彰,定期开展数学实践活动可以发展学生的动手实践能力和创新意识,发展学生应用数学思想方法解决问题的能力;定期开展数学智力竞赛,不但激发优生学习数学的积极性,也考察学生掌握数学思想方法的情况;学生编数学小报、出板报等活动,可以增长学生见识,了解较多相关知识。形式多样的数学课外活动,使数学思想方法潜移默化,引导学生在学与用中提升了对数学思想方法的认识。

㈣ 浅谈新课改下如何体现小学数学化的思想

义务教育课程标准实验教科书《数学》中所阐述的最大的一个特点就是:贴近生活、重视运用强化思维,其基本理念是让“人人学有价值的数学,人人都能获得必须的数学”,所以,所有学习内容遵循从生活中来,到生活中去的原则,围绕“生活中的数学化思想”这个中心议题,通过具体的数学活动,去经历、体验、感受数学知识的形成过程,从而完成数学知识的探究,培养学生分析问题、解决问题的能力和创新意识;在多年来的教育教学过程中,我们教研组以“小学数学教学如何体现数学化思想”为课题进行专题实验、思考、探索、研究和总结认为:体现小学数学教学数学化的思想具备思想感悟、获得精神享受、实现生命灵动和完成创新培养。
一、具备思想感悟
1、让数学走进生活。包括数学在内的一切科学知识都来源于生活启迪于生活,数学知识与学生的生活有着密切的联系,借助学生已有的数学知识和生活经验,在教学过程中,我们把教数学与生活体验结合起来,不仅生动、深刻,而且还能进行人文规范教育;如:带领学生测量旗杆高度、计算操场面积、关注家庭支出等,使学生走进客观现实生活中。
2、让数学走进游戏。游戏能够让学生主动发展,使学生全身心地投入,激活情感、个性和智能;例:转动钟表的指针,指示表面数字,既让学生知道时间,也让学生辨别角度,还让学生明白原理,寓娱乐于掌握、记忆。
3、让数学走进语言。在教育数学的实际过程中我们发现,保证数学本身的科学性,教师在数学语言化上引用比喻和实际事例明确化;即:设计红、黄、蓝三种服装的一个班级学生,每四人互相握一次手,另一位同学仔细观察记录,这样的方式增强了认识的意识、提升了同学感情、促进了思想观念。
二、获得精神享受
1、融情于数学教学。改变传统的数学教学模式,创设数学教学情境,激发学生学习数学的兴趣;托尔斯泰说过:“成功的教学不是强制,而是激发学生的兴趣”。数学是能够运用感情教学的,教师要通过创造生动、活泼、和谐的教育氛围唤起学生学习的热情,以最佳状态参与思想教学活动,强化师生的互相交流、互相爱护和互相帮助,这样,教师是无意之间获得热爱孩子的精神境界。
2、融乐于数学教学。小学学生从家庭来到学校,教师就成为他们最亲近、最友爱、最实际的朋友,教师要加大感情投入,放下架子、带上微笑、集中热情,幽默一些、风趣一些、信任一些,使学生感觉到数学课学习的欢乐愉快。
3、融责于数学教学。教学的责任是让学生懂得每一门学科的重要性,把数学的实用性、科学性和思想性融会贯通于课前准备、课堂教学和课后总结,诚然,教师可以问心无愧于每一个孩子,能够获得既是学生的良师益友,也是学生的父母兄姐,陶醉于美好的向往之中。
三、实现生命灵动
1、点燃生命灵动之火。《数学的发现》一书中这样讲:“教师在课堂上讲了什么并不是重要的,学生想了些什么更为重要。”教师要及时准确地掌握和发现学生的思想、思考和思路并及时给予表扬、鼓励和评价,使学生得到成功的优越感,发现自己的发展优势,激发灵动、点燃热情、感悟生命的价值。
2、拨响生命灵动之弦。课堂是师生共同获得文化知识、提高人生价值和实现生活梦想的场所,教师要充分利用这个有利条件,运用学生所学道的知识反映社会主义物质文明和精神文明建设的巨大成就,进行爱祖国、爱人民、爱学习。
3、闪耀生命灵动之光。现代教育教学过程不是机械地执行教案的内容,而且是在课内、课外实现全面提高学生素质的一个动态的、开放的、高效的环境,发现学生的特长、鼓励学生的思维、捕捉学生的亮点,使学生在实际学习过程中闪耀超前思维的光辉。
四、完成创新培养
在数学教学中注重对学生创新能力的培养,不仅能取得明显的教学效果,还能使学生学会独立思考,为他们以后的发展奠定科学的思想基础;根据多年的教学实践,我们认为:
1、创设情景,捕捉好奇。新课程改革理论指出:“数学教学应从学生的实际出发,创设有助于学生自主学习的问题情景”。因此,在小学数学教学中,教师要创设合理有趣的情景,逐渐培养学生学习数学的兴趣,唤起创新意识;小学生具有十分浓厚的好奇心,爱看、爱想、爱问,这就是创新意识的萌芽状态,教师要不失时机地抓住这种“迹象”使其从好奇心上升为兴趣、理想和愿望实现。
2、转变观念,提供机会。新课程改革理论强调要打破“教师讲,学生听”的陈旧方式,变“传授”为“探究”、变“灌输”为“交流”、变“教师”为“学友”,把课堂还给学生、把试题交给学生、把机会让给学生,让学生选择兴趣、大胆参与、尽情发挥。
我们在实践中还通过多媒体进行数学高效课堂教学,把现代新型科学技术运用推广,以图、文、声、像等等大容量、多信息、多趣味和高效率的优点,使小学数学里抽象的概念在课堂明朗化、简单化、清晰化、形象化,学生课堂上的注意力明显提高、兴趣感快速上升、主动性迅速增强,有效地改变了传统教学方式耗时多、效果差、理解慢的弊端,有力地加强和推进了数学化思想的进程,是小学数学教学实现合理化、科学化、思想化的跨越。

㈤ 浅谈小学数学计算教学中如何体现数学化思想

数学教学是数学活动的教学,数学源于生活,数学植根于生活。新的《数学课程标准》提出:应加强数学与学生的生活经验相联系,从学生熟知、感兴趣的生活事例出发,以生活实践为依托,将生活经验数学化,促进学生的主动参与,焕发出数学课堂的活力。在数学教学中,要遵循《数学课程标准》理念,让学生在生活中找数学、学数学、用数学。把数学真正应用于现实生活中去。数学教学的成功与否,在很大程度上表现在是否培养了学生的数学能力,而数学能力的强弱在很大程度上表现在学生能否培养了用所学知识去解决实际生活问题。

㈥ 如何在数学解题教学中渗透数学思想

一、数学思想方法教学与能力的关系

思想方法就是客观存在反映在人的意识中经过思维活动而产生的结果,它是从大量的思维活动中获得的产物,经过反复提炼和实践,一再被证明为正确、可以反复被应用到新的思维活动中,并产生出新的结果。数学思想方法,就是指现实世界的空间形式和数量关系反映到人的意识中,经过思维活动而产生的结果,它是对数学事实与数学理论(概念、定理、公式、法则等)的本质认识。所以,数学思想是对数学知识的本质认识,是对数学规律的理性认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想。数学方法是指从数学角度提出问题、解决问题(包括数学内部问题和实际问题)的过程中所采用的各种方式、手段、途径等。数学思想和数学方法是紧密联系的,一般来说,强调指导思想时称数学思想,强调操作过程时称数学方法。

数学思想方法是形成学生的良好的认知结构的纽带,是由知识转化为能力的桥梁。中学数学教学大纲中明确指出:数学基础知识是指数学中的概念、性质、法则、公式、公理、定理以及由其内容所反映出来的数学思想方法。数学思想和方法纳入基础知识范畴,足见数学思想方法的教学问题已引起教育部门的重视,也体现了我国数学教育工作者对于数学课程发展的一个共识。这不仅是加强数学素养培养的一项举措,也是数学基础教育现代化进程的必然与要求。这是因为数学的现代化教学,是要把数学基础教育建立在现代数学的思想基础上,并使用现代数学的方法和语言。因此,探讨数学思想方法教学的
一系列问题,已成为数学现代教育研究中的一项重要课题。

从心理发展规律看,初中学生的思维是以形式思维为主向辨证思维过渡,高中学生的思维则是辨证思维的形成。进行数学思想方法教学,不仅有助于学生从形式思维向辩证思维过渡,而且是形成和发展学生辩证思维的重要途径。

从认知心理学角度看,数学学习过程是一个数学认知结构的发展变化过程,这个过程是通过同化和顺应两种方式实现的。所谓同化,就是主体把新的数学学习内容纳入到自身原有的认知结构中去,把新的数学材料进行加工改造,使之与原教学学习认知结构相适应。所谓顺应,是指主体原有的数学认识结构不能有效地同化新的学习材料时,主体调整成改造原来的数学内部结构去适应新的学习材料.在同化中,数学基础知识不具备思维特点和能动性,不能指导“加工”过程的进行。而心理成份只给主体提供愿望和动机,提供主体认知特点,仅凭它也不能实现“加工”过程。数学思想方法不仅提供思维策略(设计思想),而且还提供实施目标的具体手段(解题方法)。实际上数学中的转化、化归就是实现新旧知识的同化。与同化一样,顺应也在数学思想方法的指导下进行。积极进行数学思想方法教学,将极大地促进学生的数学认知结构的发展与完善。

从学习迁移看,数学思想方法有利于学生学习迁移,特别是原理和态度的迁移,从而可以极大地提高学习质量和数学能力。布鲁纳认为
“学习基本原理的目的,就在于促进记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来。高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具。”由此可见,数学思想方法作为数学学科的“一般原理”,在教学中是至关重要的,因此,对于中学生,不管他们将来从事什么工作,唯有深深地铭刻于头脑中的数学思想方法将随时随地发生作用,使他们受益终生。

二、数学思想方法的教学原理

数学思想方法的教学原理是说明数学思想方法的教学规律的。中学数学的课程内容是由具体的数学知识与数学思想方法组成的有机整体,现行数学教材的编排一般是沿知识的纵方向展开的,大量的数学思想方法只是蕴涵在数学知识的体系之中,并没有明确的揭示和总结。这样就产生了如何处理数学思想方法教学的问题。进行数学思想方法的教学,必须在实践中探索规律,以构成数学思想方法教学的指导原则。数学思想方法的构建有三个阶段:潜意识阶段、明朗和形成阶段、深化阶段。一般来说,应以贯彻渗透性原则为主线,结合落实反复性、系统性和明确性的原则.它们相互联系,相辅相成,共同构成数学思想方法教学的指导思想。

㈦ 教学设计中如何体现数学思想和方法

问题是数学的心脏,方法是数学的行为,思想是数学的灵魂。不管是数学概念的建立,数学规律的发现,还是数学问题的解决,乃至整个数学大厦的构建,核心问题在于数学思想方法的培养和建立。在一个人的一生中,最有用的不仅是数学知识,更重要的是数学的思想和数学的意识。因此,在数学教学中,不仅要重视知识形成过程,还要十分重视挖掘在数学知识的发生、形成和发展过程中所蕴藏的数学思想方法。 一、在备课中,有意识地体现数学思想方法 教师要进行数学思想方法的教学,首先要有意识地从教学目的的确定、教学过程的实施,教学效果的落实等各个方面来体现,使每节课的教学、教育目的获得和谐的统一。通过对教材完整的分析和研究,理清和把握教材的体系和脉络,统揽教材全局,高屋建瓴。然后建立各类概念、知识点或知识单元之间的界面关系,归纳和揭示其特殊性质和内在的一般规律。因而,在备课时就必须把数学思想方法的教学从钻研教材中加以挖掘。例如,在备《二元一次方程组》(北师大版八年级上册第七章)这一章时,就要挖掘方程思想、建模思想、化未知为己知、化二元为一元的化归思想方法。 二、以教材知识为载体,在教学中渗透数学思想方法 数学教材是按数学内容的逻辑体系与认识理论的教学体系相结合的办法来安排的。受篇幅的限制,教材内容较多显示的是数学结论,对数学结论里面所隐含的数学思想方法以及数学思维活动的过程,并没有在教材里明显地体现。然而,数学是知识与思想方法的有机结合,没有不包含数学思想方法的数学知识,也没有游离于数学知识之外的数学思想方法。这就要求教师在教学中,深入挖掘隐含在教材里的数学思想方法,精心设计课堂教学过程,展示数学思维过程,这样才有助于学生了解其中数学思想方法的产生、应用和发展的过程;理解数学思想方法的特征,应用的条件,掌握数学思想方法的实质。例如立体几何教学中许多内容都体现了一个重要思想方法把空间里的问题转化为平面上的问题,在教学过程中,就要善于引导学生从具体问题中提炼出这一具有普遍指导作用的思想方法。并进一步上升为降维的思想方法,再总结出更一般的更高层次的思想转化与化归。 不同的教学内容,可根据其特点,选配不同的数学思想方法进行教学:一般在知识的概念形成阶段导入概念型数学思想,如方程思想、相似思想、已知与未知互相转化的思想、特殊与一般互相转化的思想等;在知识的结论、公式、法则等规律的推导阶段,强调和灌输思维方法,如解方程的如何消元降次、函数的数与形的转化、判定两个三角形相似有哪些常用思路等;在知识的总结阶段或新、旧知识结合部分,选配结构型的数学思想,如函数与方程思想体现了函数、方程、不等式间的相互转化,分组讨论思想体现了局部与整体的相互转化。 三、在掌握重点、突破难点中,有意识地运用数学思想方法 数学教学中的重点,往往就是需要有意识地运用或揭示数学思想方法之处。数学教学中的难点,往往与数学思想方法的更新交替、综合运用、跳跃性较大有关。因此,教师要掌握重点,突破难点,更要有意识地运用数学思想方法组织教学。例如,二次根式的加减运算是一个教学难点,为了突破难点,就要运用类比思想、整体思想、化归转换思想方法寻找解决问题途径,采用类比整式的加减运算的手段,构造出具体形象的数学模型,从而进行猜想、推理、研究,实现从未知到已知的转化。 四、在展现数学知识的形成与应用过程中,提炼数学思想方法 数学知识发生的过程也是其思想方法产生的过程。在此过程中,向学生提供丰富的、典型的、正确的直观背景材料,采取问题情境建立模型解释、应用与拓展的模式,通过对相关问题情境的研究为有效切入点,对知识发生过程的展示,使学生的思维和经验全部投入到接受问题、分析问题和感悟思想方法的挑战之中,并在此过程领会如数感、符号感、空间观念、统计观念、应用意识和推理能力等数学思想方法。例如在讲授《探索勾股定理》(北师大版八年级上册第一章第一节)时,将概念、结论性知识的教学设计成再发现、再创造的教学:先让学生在方格纸上计算面积的方法理解勾股定理,再用拼图的方法验证其内容,让学生经历观察、归纳、猜想和验证的数学发现过程,使学生在动脑、动手的过程中领悟、体验、提炼数学思想方法数形结合思想(将三角形三边的平方与正方形面积联系起来,再比较同一正方形面积的几种不同的代数表示,得到勾股定理)。在展现数学知识的形成与应用过程中,着重过程(不要过早下结论),引导学生积极参与数学定理、性质、法则、公式等结论的探索、发现、推导过程,弄清每个结论的因果关系。经过分析、综合、比较、抽象、概括等思维的逻辑加工,完整地体现这一生动过程,不失时机地引导学生(不要包办代替),揭示数学思想方法本质特征。 五、通过范例教学,挖掘数学思想方法 有意识地组织学生进行必要的解题训练,设计具有探索性的、能从中抽象一般和特

㈧ 如何在小学数学教学中渗透数学思想

小学数学中蕴含着丰富的数学思想方法,因此,在小学数学教学中加强数学思想方法的渗透教学不但重要,而且是现实可行的。
一、转变思想,重视挖掘数学思想方法
数学知识明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。因此,作为教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目标,把数学思想方法教学的要求融入备课环节。
二、把握机会,适时渗透数学思想方法
为了更好地在小学数学教学中渗透数学思想方法,教师不仅要对教材进行研究,潜心挖掘,而且还要讲究数学思想方法渗透的手段和方式。小学阶段,数学思想方法的渗透一般常用直观法、问题法、反复法和剖析法。在教学过程中,教师应掌握方法,不失时机地向学生渗透数学思想方法。
三、勤于训练,自觉提炼数学思想方法
数学思想方法的教学是一个长期的过程,它应通过一定的训练,巩固和深化已经掌握的数学知识以及数学思想方法,进而归纳和提炼出新的数学思想方法。在教学中,教师可通过数学思想方法的广泛渗透,让学生从主观上重视数学思想方法的学习,增强自觉提炼数学思想方法的意识。教师对习题的设计也应该从数学思想方法的角度加以考虑,尽量多安排一些能使各种学习水平的学生深入浅出地作出解答的习题。
四、统筹安排,逐步领悟数学思想方法
对学生进行数学思想方法的渗透必定要经历一个循环往复、螺旋上升的过程,而且常常是几种数学思想方法交织在一起出现,这就要求教师有一个总体的设计安排,分析什么时候渗透哪些数学思想方法,如何渗透,渗透到什么程度,并据此提出不同阶段的具体教学要求,确定在某一段时间内重点渗透与明确哪一种数学思想方法。长此以往,逐步使学生领悟数学思想方法的真谛。

㈨ 如何在课堂教学中让学生领悟数学思想

在“有形”的数学知识中,必定蕴含着“无形”的数学思想方法。数学知识是一条明线,写在教材里;数学思想方法是一条暗线,体现在知识与技能的形成过程中。如何结合具体内容进行数学思想方法渗透、渗透哪些数学思想方法、怎么渗透、渗透到什么程度等,都会成为小学数学教师教学行为中的现实问题。作为课堂引领的小学数学教师,该如何调控自己的教学行为,让数学知识与思想方法两条线在数学课堂中齐头并进呢?
1、在操作中交流比较,感悟有效渗透数学思想方法必要性。
让我们走进两位数学老师的“三角形的面积”课堂,一起感悟不同的教学定位演绎出的不同教学效果。
[案例甲]
教师课前让每位学生准备两个完全一样的三角形。
上课时教师出示带有方格的几个三角形,问:谁能算出它们的面积?(学生用数方格的方法很快算出结果)
接着,教师出示不带方格的几个三角形,让学生算出它们的面积。(学生感到困惑,教师抓住时机,告诉学生下面共同探讨这个问题)
于是,教师请学生拿出课前准备好的两个完全一样的三角形,问:你能想办法把两个完全一样的三角形拼成已学过的图形吗?
(学生动手操作,获得以下结果。)
生1:我拼成了平行四边形。
生2:我拼成了正方形。
生3:我拼成了长方形。
5.师:拼成的图形与原三角形有什么关系?
6.师生问答推导出三角形的面积公式。
[案例乙]
教师课前布置学生每人准备一把剪刀,给各小组准备完全一样的(锐角、钝角、直角)三角形各两个和形状、大小各不一样的三角形6个。
上课时,老师让同学们回顾一下,平行四边形的面积公式我们是怎样推导的?
生:把平行四边形转化成长方形,然后推导出来的。
师:好,那么你们能不能把三角形也转化成我们学过的图形,然后推导出三角形的面积计算公式?(学生4人小组,动手拼摆、割补三角形)
全班交流后,学生获得以下答案。
生1:我们发现一个锐角三角形和一个钝角三角形不能拼成已学过的图形。(边说边演示)
生2:我们也发现两个不一样的直角三角形不能拼成已学过的图形。(边说边演示)
生3:我们用两个完全一样的直角三角形拼成了长方形。(边说边演示)
生4:我们用两个完全一样的直角三角形拼成的是正方形。(边说边演示)
生5:我们用两个完全一样的直角三角形拼成的可是平行四边形。(边说边演示)
然后,又有几名学生分别用两个完全一样的锐角三角形、钝角三角形演示说明也能拼成已学过的图形。
师:还有其他的发现吗?
生6:一个三角形通过割补也能转化成已学过的图形。(边说边演示)
师:你真了不起!
【反思与启示】:从甲教师身上看到的是“教教材”的影子,只是为了教教材而教,按照教材的安排顺序组织教学,整个教学片断缺少学生自主探究的空间,其根本原因是缺少数学思想方法的渗透,无法激发学生的数学思考。而乙教师通过小组合作探究活动,通过分组探究讨论、全班交流,学生充分感受到了“转化”的思想方法,在课堂中数学思考的广度与深度明显要优于前者,因此,我们认为在小学数学课堂中有必要进行渗透数学思想方法的研究。
2、在情境中多次体验,逐级递进提炼数学思想方法。
从学生的数学思想形成过程中,我们不难发现学生的数学思想不可能向数学知识那样一步到位,它需要有一个不断渗透、循序渐进、由浅入深的过程。在这个过程中,需要我们教师做一个“过程”的加强者,不断用我们的数学思想“敲打”学生的思维、让学生在一次次的“敲打”过程中,不断的积累、不断的感悟、不断的明朗,直到最后的主动应用。
以“化曲为直”思想在《认识周长》一课中的有效渗透为例,谈如何围绕“化曲为直”思想循序渐进地开展教学活动。
【教学片断】1:预习设计测量圆边线的长,初步感知“化曲为直”思想。
师:请同学们从学具袋中取一个圆。提问:你能想办法知道圆一周边线的长吗?
生1:我沿着直尺滚一圈,就能知道圆一周边线的长。
生2:我用绳子先围一围,再测量绳子的长就能知道圆一周边线的长。
生3:我先将圆对折两次,再用绳子量圆弧的长,然后后用尺子量出绳子的长,最后乘4就得到圆一周边线的长。

㈩ 如何在教学中培养学生的数学思想

所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。数学思想是数学的灵魂,数学方法是数学的行为。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张张蓝图就相当于数学思想。
数学知识的发生、发展过程,也是数学思想方法不断完善与创新的过程。伴随课程改革日益深入,数学观念不断更新,数学思想方法的重要性也就越来越凸显出来。《课程标准》指出,要让不同的人在数学上得到不同的发展,其中最重要的就是学生数学思想方法的形成与发展。对学生来说,“作为知识的数学出校门不到两年可能就忘了,唯有深深铭记在头脑中的是数学的精神、数学的思想、研究方法和着眼点等。这些都随时随地发生作用,使他们终生受益。”(日本数学家米山国藏语)。那么,作为初中数学教师,在教学实践中,如何挖掘并系统地向学生进行数学思想方法的教育应是一个值得深思的课题。下面我就谈谈自己在平时的教学中如何进行数学思想方法的渗透。

阅读全文

与教学如何体现数学化思想相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:736
乙酸乙酯化学式怎么算 浏览:1400
沈阳初中的数学是什么版本的 浏览:1346
华为手机家人共享如何查看地理位置 浏览:1038
一氧化碳还原氧化铝化学方程式怎么配平 浏览:880
数学c什么意思是什么意思是什么 浏览:1404
中考初中地理如何补 浏览:1294
360浏览器历史在哪里下载迅雷下载 浏览:697
数学奥数卡怎么办 浏览:1383
如何回答地理是什么 浏览:1018
win7如何删除电脑文件浏览历史 浏览:1050
大学物理实验干什么用的到 浏览:1480
二年级上册数学框框怎么填 浏览:1695
西安瑞禧生物科技有限公司怎么样 浏览:958
武大的分析化学怎么样 浏览:1243
ige电化学发光偏高怎么办 浏览:1333
学而思初中英语和语文怎么样 浏览:1646
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1481
数学中的棱的意思是什么 浏览:1053