导航:首页 > 数字科学 > 初中数学包括哪些内容

初中数学包括哪些内容

发布时间:2022-02-26 19:33:19

A. 初中数学内容有哪些

初中数学内容主要有《有理数》作为初中数学的第一章内容,包括有理数的加减有理数的乘除有理数的乘方,有理数的幂的运算以及有理数的混合运算。初中数学里面还学习了一元一次方程、一元一次方程组、分式方程、整式、圆、一次函数,二次函数,等等,这些内容

B. 初中数学有哪些内容

我只能给你总结一些知识点,见谅见谅 初中的数学主要是分代数和几何两大部分,两者在中考中所占的比例,代数略大于几何(我不知道你是哪里的人,反正在我们江苏省泰州市的中考中是这样的)。 代数主要有以下几点:1,有理数的运算,主要讲有理数的三级运算(加减乘除和乘方开方)在这里要注意数字和字母的符号意识,就是,不要受小学数字的影响,一看见字母就不会做题了。2,整式的三级运算,注意符号意识的培养,还有就是因式分解,这和整式的乘法是互换的,注意像平方差公式和完全平方公式的正用、逆用和变形用。3,方程,会一元一次、二元一次、三元一次、一元二次四种方程的解法和应用,记住,方程是一种方法,是一种解题的手段。4,函数,会识别一次函数、二次函数、反比例函数的图像,记住他们的特征,要会根据条件来应用。尤其要注意二次函数,这是中考的重点和难点。应用题里会拿它来出一道难题的 几何主要有以下几点:1,识别各种平面图形和立体图形,这你应该非常熟悉。2,图形的平移、旋转和轴对称,这个考察你的空间想象的能力,多做一些题。3,三角形的全等和相似,要会证明,注意要有完整的过程和严密的步骤,背过证明三角形全等的五种方法和证明相似的四种方法;还有像等腰三角形、直角三角形和黄金三角形的性质,要会应用,这在证明题中会有很大的帮助。4,四边形,把握好平行四边形、长方形、正方形、菱形和梯形的概念,选择体里会拿着它们之间的微小差异而大做文章,注意它们的判定和性质,证明题里也会考到。5,圆,我这里没有细学,因为这里不是我们中考的重点,但是圆的难度会很大,它的知识点很多、很碎,圆的难题就是由许许多多细小的点构成的。 以上就是我对初中数学知识的总结,不过,这毕竟是我的东西,我是个高中生,初中的课本我也有一段时间没碰过了,有遗漏之处,就要靠你的努力了(不好意思,题目我也没有)

C. 初中数学都有什么内容

很多的学生到了初中之后,发现自己的分数会有一定的下降,这可能是由于上初中之后数学科目的难度加大,所以分数会有一定的降低,那么初中数学应该怎样学?应该使用什么方式哪?

知识点

当老师在讲完内容之后会讲一些课外的内容,一般是定理、概念等等,会让你对这些知识更加的了解,所以如果对这类题目有问题的同学可以多看一些课外的题目,当然想要提升分数是离不开练习题的,想要多好就需要多做一些习题,但是不可以过多,需要边做边思考才可以,这样所学的知识就会运用出来.

以上就是初中数学应该怎样学习的内容,如果在这个阶段对自己分数不满意的同学可以借鉴一下以上的内容,或许会对你有一定的帮助,将自身的分数提升.

D. 初中数学都学哪些内容

怎样学好初中数学?需要使用什么方式哪?

数学是很多的学生都在烦恼的问题,有很多的学生存在一定的问题,这个科目的分数非常低,那么怎样学好初中数学哪?有什么方式可以改善吗?

知识点

所以想要学好数学,需要多方面的努力,这与很多的因素有关,首先可以找到属于自己的学习方式,然后了解这个科目的特点,使自己有一定的了解之后,开始进行学习,相信通过本篇文章你应该知道怎样学好初中数学了吧!

E. 请问初中数学都学了那些内容..说具体点..

初中数学知识点归纳.

有理数的加法运算

同号两数来相加,绝对值加不变号。

异号相加大减小,大数决定和符号。

互为相反数求和,结果是零须记好。

【注】“大”减“小”是指绝对值的大小。

有理数的减法运算

减正等于加负,减负等于加正。

有理数的乘法运算符号法则

同号得正异号负,一项为零积是零。

合并同类项

说起合并同类项,法则千万不能忘。

只求系数代数和,字母指数留原样。

去、添括号法则

去括号或添括号,关键要看连接号。

扩号前面是正号,去添括号不变号。

括号前面是负号,去添括号都变号。

解方程

已知未知闹分离,分离要靠移完成。

移加变减减变加,移乘变除除变乘。

平方差公式

两数和乘两数差,等于两数平方差。

积化和差变两项,完全平方不是它。

完全平方公式

二数和或差平方,展开式它共三项。

首平方与末平方,首末二倍中间放。

和的平方加联结,先减后加差平方。

完全平方公式

首平方又末平方,二倍首末在中央。

和的平方加再加,先减后加差平方。

解一元一次方程

先去分母再括号,移项变号要记牢。

同类各项去合并,系数化“1”还没好。

求得未知须检验,回代值等才算了。

解一元一次方程

先去分母再括号,移项合并同类项。

系数化1还没好,准确无误不白忙。

因式分解与乘法

和差化积是乘法,乘法本身是运算。

积化和差是分解,因式分解非运算。

因式分解

两式平方符号异,因式分解你别怕。

两底和乘两底差,分解结果就是它。

两式平方符号同,底积2倍坐中央。

因式分解能与否,符号上面有文章。

同和异差先平方,还要加上正负号。

同正则正负就负,异则需添幂符号。

因式分解

一提二套三分组,十字相乘也上数。

四种方法都不行,拆项添项去重组。

重组无望试求根,换元或者算余数。

多种方法灵活选,连乘结果是基础。

同式相乘若出现,乘方表示要记住。

【注】 一提(提公因式)二套(套公式)

因式分解

一提二套三分组,叉乘求根也上数。

五种方法都不行,拆项添项去重组。

对症下药稳又准,连乘结果是基础。

二次三项式的因式分解

先想完全平方式,十字相乘是其次。

两种方法行不通,求根分解去尝试。

比和比例

两数相除也叫比,两比相等叫比例。

外项积等内项积,等积可化八比例。

分别交换内外项,统统都要叫更比。

同时交换内外项,便要称其为反比。

前后项和比后项,比值不变叫合比。

前后项差比后项,组成比例是分比。

两项和比两项差,比值相等合分比。

前项和比后项和,比值不变叫等比。

解比例

外项积等内项积,列出方程并解之。

求比值

由已知去求比值,多种途径可利用。

活用比例七性质,变量替换也走红。

消元也是好办法,殊途同归会变通。

正比例与反比例

商定变量成正比,积定变量成反比。

正比例与反比例

变化过程商一定,两个变量成正比。

变化过程积一定,两个变量成反比。

判断四数成比例

四数是否成比例,递增递减先排序。

两端积等中间积,四数一定成比例。

判断四式成比例

四式是否成比例,生或降幂先排序。

两端积等中间积,四式便可成比例。

比例中项

成比例的四项中,外项相同会遇到。

有时内项会相同,比例中项少不了。

比例中项很重要,多种场合会碰到。

成比例的四项中,外项相同有不少。

有时内项会相同,比例中项出现了。

同数平方等异积,比例中项无处逃。

根式与无理式

表示方根代数式,都可称其为根式。

根式异于无理式,被开方式无限制。

被开方式有字母,才能称为无理式。

无理式都是根式,区分它们有标志。

被开方式有字母,又可称为无理式。

求定义域

求定义域有讲究,四项原则须留意。

负数不能开平方,分母为零无意义。

指是分数底正数,数零没有零次幂。

限制条件不唯一,满足多个不等式。

求定义域要过关,四项原则须注意。

负数不能开平方,分母为零无意义。

分数指数底正数,数零没有零次幂。

限制条件不唯一,不等式组求解集。

解一元一次不等式

先去分母再括号,移项合并同类项。

系数化“1”有讲究,同乘除负要变向。

先去分母再括号,移项别忘要变号。

同类各项去合并,系数化“1”注意了。

同乘除正无防碍,同乘除负也变号。

解一元一次不等式组

大于头来小于尾,大小不一中间找。

大大小小没有解,四种情况全来了。

同向取两边,异向取中间。

中间无元素,无解便出现。

幼儿园小鬼当家,(同小相对取较小)

敬老院以老为荣,(同大就要取较大)

军营里没老没少。(大小小大就是它)

大大小小解集空。(小小大大哪有哇)

解一元二次不等式

首先化成一般式,构造函数第二站。

判别式值若非负,曲线横轴有交点。

A正开口它向上,大于零则取两边。

代数式若小于零,解集交点数之间。

方程若无实数根,口上大零解为全。

小于零将没有解,开口向下正相反。

用平方差公式因式分解

异号两个平方项,因式分解有办法。

两底和乘两底差,分解结果就是它。

用完全平方公式因式分解

两平方项在两端,底积2倍在中部。

同正两底和平方,全负和方相反数。

分成两底差平方,方正倍积要为负。

两边为负中间正,底差平方相反数。

一平方又一平方,底积2倍在中路。

三正两底和平方,全负和方相反数。

分成两底差平方,两端为正倍积负。

两边若负中间正,底差平方相反数。

用公式法解一元二次方程

要用公式解方程,首先化成一般式。

调整系数随其后,使其成为最简比。

确定参数abc,计算方程判别式。

判别式值与零比,有无实根便得知。

有实根可套公式,没有实根要告之。

用常规配方法解一元二次方程

左未右已先分离,二系化“1”是其次。

一系折半再平方,两边同加没问题。

左边分解右合并,直接开方去解题。

该种解法叫配方,解方程时多练习。

用间接配方法解一元二次方程

已知未知先分离,因式分解是其次。

调整系数等互反,和差积套恒等式。

完全平方等常数,间接配方显优势

【注】 恒等式

解一元二次方程

方程没有一次项,直接开方最理想。

如果缺少常数项,因式分解没商量。

b、c相等都为零,等根是零不要忘。

b、c同时不为零,因式分解或配方,

也可直接套公式,因题而异择良方。

正比例函数的鉴别

判断正比例函数,检验当分两步走。

一量表示另一量,

初中数学口诀

上海市同洲模范学校 宋立峰

有理数的加法运算

同号两数来相加,绝对值加不变号。

异号相加大减小,大数决定和符号。

互为相反数求和,结果是零须记好。

【注】“大”减“小”是指绝对值的大小。

有理数的减法运算

减正等于加负,减负等于加正。

有理数的乘法运算符号法则

同号得正异号负,一项为零积是零。

合并同类项

说起合并同类项,法则千万不能忘。

只求系数代数和,字母指数留原样。

去、添括号法则

去括号或添括号,关键要看连接号。

扩号前面是正号,去添括号不变号。

括号前面是负号,去添括号都变号。

解方程

已知未知闹分离,分离要靠移完成。

移加变减减变加,移乘变除除变乘。

平方差公式

两数和乘两数差,等于两数平方差。

积化和差变两项,完全平方不是它。

完全平方公式

二数和或差平方,展开式它共三项。

首平方与末平方,首末二倍中间放。

和的平方加联结,先减后加差平方。

完全平方公式

首平方又末平方,二倍首末在中央。

和的平方加再加,先减后加差平方。

解一元一次方程

先去分母再括号,移项变号要记牢。

同类各项去合并,系数化“1”还没好。

求得未知须检验,回代值等才算了。

解一元一次方程

先去分母再括号,移项合并同类项。

系数化1还没好,准确无误不白忙。

因式分解与乘法

和差化积是乘法,乘法本身是运算。

积化和差是分解,因式分解非运算。

因式分解

两式平方符号异,因式分解你别怕。

两底和乘两底差,分解结果就是它。

两式平方符号同,底积2倍坐中央。

因式分解能与否,符号上面有文章。

同和异差先平方,还要加上正负号。

同正则正负就负,异则需添幂符号。

因式分解

一提二套三分组,十字相乘也上数。

四种方法都不行,拆项添项去重组。

重组无望试求根,换元或者算余数。

多种方法灵活选,连乘结果是基础。

同式相乘若出现,乘方表示要记住。

【注】 一提(提公因式)二套(套公式)

因式分解

一提二套三分组,叉乘求根也上数。

五种方法都不行,拆项添项去重组。

对症下药稳又准,连乘结果是基础。

二次三项式的因式分解

先想完全平方式,十字相乘是其次。

两种方法行不通,求根分解去尝试。

比和比例

两数相除也叫比,两比相等叫比例。

外项积等内项积,等积可化八比例。

分别交换内外项,统统都要叫更比。

同时交换内外项,便要称其为反比。

前后项和比后项,比值不变叫合比。

前后项差比后项,组成比例是分比。

两项和比两项差,比值相等合分比。

前项和比后项和,比值不变叫等比。

解比例

外项积等内项积,列出方程并解之。

求比值

由已知去求比值,多种途径可利用。

活用比例七性质,变量替换也走红。

消元也是好办法,殊途同归会变通。

正比例与反比例

商定变量成正比,积定变量成反比。

正比例与反比例

变化过程商一定,两个变量成正比。

变化过程积一定,两个变量成反比。

判断四数成比例

四数是否成比例,递增递减先排序。

两端积等中间积,四数一定成比例。

判断四式成比例

四式是否成比例,生或降幂先排序。

两端积等中间积,四式便可成比例。

比例中项

成比例的四项中,外项相同会遇到。

有时内项会相同,比例中项少不了。

比例中项很重要,多种场合会碰到。

成比例的四项中,外项相同有不少。

有时内项会相同,比例中项出现了。

同数平方等异积,比例中项无处逃。

根式与无理式

表示方根代数式,都可称其为根式。

根式异于无理式,被开方式无限制。

被开方式有字母,才能称为无理式。

无理式都是根式,区分它们有标志。

被开方式有字母,又可称为无理式。

求定义域

求定义域有讲究,四项原则须留意。

负数不能开平方,分母为零无意义。

指是分数底正数,数零没有零次幂。

限制条件不唯一,满足多个不等式。

求定义域要过关,四项原则须注意。

负数不能开平方,分母为零无意义。

分数指数底正数,数零没有零次幂。

限制条件不唯一,不等式组求解集。

解一元一次不等式

先去分母再括号,移项合并同类项。

系数化“1”有讲究,同乘除负要变向。

先去分母再括号,移项别忘要变号。

同类各项去合并,系数化“1”注意了。

同乘除正无防碍,同乘除负也变号。

解一元一次不等式组

大于头来小于尾,大小不一中间找。

大大小小没有解,四种情况全来了。

同向取两边,异向取中间。

中间无元素,无解便出现。

幼儿园小鬼当家,(同小相对取较小)

敬老院以老为荣,(同大就要取较大)

军营里没老没少。(大小小大就是它)

大大小小解集空。(小小大大哪有哇)

解一元二次不等式

首先化成一般式,构造函数第二站。

判别式值若非负,曲线横轴有交点。

A正开口它向上,大于零则取两边。

代数式若小于零,解集交点数之间。

方程若无实数根,口上大零解为全。

小于零将没有解,开口向下正相反。

用平方差公式因式分解

异号两个平方项,因式分解有办法。

两底和乘两底差,分解结果就是它。

用完全平方公式因式分解

两平方项在两端,底积2倍在中部。

同正两底和平方,全负和方相反数。

分成两底差平方,方正倍积要为负。

两边为负中间正,底差平方相反数。

一平方又一平方,底积2倍在中路。

三正两底和平方,全负和方相反数。

分成两底差平方,两端为正倍积负。

两边若负中间正,底差平方相反数。

用公式法解一元二次方程

要用公式解方程,首先化成一般式。

调整系数随其后,使其成为最简比。

确定参数abc,计算方程判别式。

判别式值与零比,有无实根便得知。

有实根可套公式,没有实根要告之。

用常规配方法解一元二次方程

左未右已先分离,二系化“1”是其次。

一系折半再平方,两边同加没问题。

左边分解右合并,直接开方去解题。

该种解法叫配方,解方程时多练习。

用间接配方法解一元二次方程

已知未知先分离,因式分解是其次。

调整系数等互反,和差积套恒等式。

完全平方等常数,间接配方显优势

【注】 恒等式

解一元二次方程

方程没有一次项,直接开方最理想。

如果缺少常数项,因式分解没商量。

b、c相等都为零,等根是零不要忘。

b、c同时不为零,因式分解或配方,

也可直接套公式,因题而异择良方。

正比例函数的鉴别

判断正比例函数,检验当分两步走。

一量表示另一量, 是与否。

若有还要看取值,全体实数都要有。

正比例函数是否,辨别需分两步走。

一量表示另一量, 有没有。

若有再去看取值,全体实数都需要。

区分正比例函数,衡量可分两步走。

一量表示另一量, 是与否。

若有还要看取值,全体实数都要有。

正比例函数的图象与性质

正比函数图直线,经过 和原点。

K正一三负二四,变化趋势记心间。

K正左低右边高,同大同小向爬山。

K负左高右边低,一大另小下山峦。

一次函数

一次函数图直线,经过 点。

K正左低右边高,越走越高向爬山。

K负左高右边低,越来越低很明显。

K称斜率b截距,截距为零变正函。

反比例函数

反比函数双曲线,经过 点。

K正一三负二四,两轴是它渐近线。

K正左高右边低,一三象限滑下山。

K负左低右边高,二四象限如爬山。

二次函数

二次方程零换y,二次函数便出现。

全体实数定义域,图像叫做抛物线。

抛物线有对称轴,两边单调正相反。

A定开口及大小,线轴交点叫顶点。

顶点非高即最低。上低下高很显眼。

如果要画抛物线,平移也可去描点,

提取配方定顶点,两条途径再挑选。

列表描点后连线,平移规律记心间。

左加右减括号内,号外上加下要减。

二次方程零换y,就得到二次函数。

图像叫做抛物线,定义域全体实数。

A定开口及大小,开口向上是正数。

绝对值大开口小,开口向下A负数。

抛物线有对称轴,增减特性可看图。

线轴交点叫顶点,顶点纵标最值出。

如果要画抛物线,描点平移两条路。

提取配方定顶点,平移描点皆成图。

列表描点后连线,三点大致定全图。

若要平移也不难,先画基础抛物线,

顶点移到新位置,开口大小随基础。

【注】基础抛物线

直线、射线与线段

直线射线与线段,形状相似有关联。

直线长短不确定,可向两方无限延。

射线仅有一端点,反向延长成直线。

线段定长两端点,双向延伸变直线。

两点定线是共性,组成图形最常见。



一点出发两射线,组成图形叫做角。

共线反向是平角,平角之半叫直角。

平角两倍成周角,小于直角叫锐角。

直平之间是钝角,平周之间叫优角。

互余两角和直角,和是平角互补角。

一点出发两射线,组成图形叫做角。

平角反向且共线,平角之半叫直角。

平角两倍成周角,小于直角叫锐角。

钝角界于直平间,平周之间叫优角。

和为直角叫互余,互为补角和平角。

证等积或比例线段

等积或比例线段,多种途径可以证。

证等积要改等比,对照图形看特征。

共点共线线相交,平行截比把题证。

三点定型十分像,想法来把相似证。

图形明显不相似,等线段比替换证。

换后结论能成立,原来命题即得证。

实在不行用面积,射影角分线也成。

只要学习肯登攀,手脑并用无不胜。

解无理方程

一无一有各一边,两无也要放两边。

乘方根号无踪迹,方程可解无负担。

两无一有相对难,两次乘方也好办。

特殊情况去换元,得解验根是必然。

解分式方程

先约后乘公分母,整式方程转化出。

特殊情况可换元,去掉分母是出路。

求得解后要验根,原留增舍别含糊。

列方程解应用题

列方程解应用题,审设列解双检答。

审题弄清已未知,设元直间两办法。

列表画图造方程,解方程时守章法。

检验准且合题意,问求同一才作答。

添加辅助线

学习几何体会深,成败也许一线牵。

分散条件要集中,常要添加辅助线。

畏惧心理不要有,其次要把观念变。

熟能生巧有规律,真知灼见靠实践。

图中已知有中线,倍长中线把线连。

旋转构造全等形,等线段角可代换。

多条中线连中点,便可得到中位线。

倘若知角平分线,既可两边作垂线。

也可沿线去翻折,全等图形立呈现。

角分线若加垂线,等腰三角形可见。

角分线加平行线,等线段角位置变。

已知线段中垂线,连接两端等线段。

辅助线必画虚线,便与原图联系看。

两点间距离公式

同轴两点求距离,大减小数就为之。

与轴等距两个点,间距求法亦如此。

平面任意两个点,横纵标差先求值。

差方相加开平方,距离公式要牢记。

矩形的判定

任意一个四边形,三个直角成矩形;

对角线等互平分,四边形它是矩形。

已知平行四边形,一个直角叫矩形;

两对角线若相等,理所当然为矩形。

菱形的判定

任意一个四边形,四边相等成菱形;

四边形的对角线,垂直互分是菱形。

已知平行四边形,邻边相等叫菱形;

两对角线若垂直,顺理成章为菱形。

F. 初中数学总内容有哪些

初中的数学主要是分代数和几何两大部分,两者在中考中所占的比例,一般代数略大于几何
代数主要有以下几点:1,有理数的运算,主要讲有理数的三级运算(加减乘除和乘方开方)在这里要注意数字和字母的符号意识,就是,不要受小学数字的影响,一看见字母就不会做题了。2,整式的三级运算,注意符号意识的培养,还有就是因式分解,这和整式的乘法是互换的,注意像平方差公式和完全平方公式的正用、逆用和变形用。3,方程,会一元一次、二元一次、三元一次、一元二次四种方程的解法和应用,记住,方程是一种方法,是一种解题的手段。4,函数,会识别一次函数、二次函数、反比例函数的图像,记住他们的特征,要会根据条件来应用。尤其要注意二次函数,这是中考的重点和难点。应用题里会拿它来出一道难题的
几何主要有以下几点:1,识别各种平面图形和立体图形,这你应该非常熟悉。2,图形的平移、旋转和轴对称,这个考察你的空间想象的能力,多做一些题。3,三角形的全等和相似,要会证明,注意要有完整的过程和严密的步骤,背过证明三角形全等的五种方法和证明相似的四种方法;还有像等腰三角形、直角三角形和黄金三角形的
性质,要会应用,这在证明题中会有很大的帮助。4,四边形,把握好平行四边形、长方形、正方形、菱形和梯形的概念,选择体里会拿着它们之间的微小差异而大
做文章,注意它们的判定和性质,证明题里也会考到。5,圆,这几年圆在中考中考察的比重越来越小,难度也比以前简单了很多。

G. 初中数学涉及哪些方面

数与代数,空间与图形,统计与概率,实践与应用四个方面。

H. 初中数学有哪些内容

1、有理数的认识和计算、科学技术法、2、平行、3、多边形、4、不等式5、一元一次方程6、一元一次不等式7、二元一次方程组8、统计麻烦采纳,谢谢!

I. 初中数学基础知识主要包括哪些内容

http://www.doc88.com/p-7089924847371.html
望采纳

J. 数学一共包括哪些内容

高中数学主要是代数,三角,几何三个部分.内容相互独立但是解题时常互相提供方法,等高三你就知道了. 必修的: 代数部分有: 1 集合与简易逻辑.其实就是集合,命题,充要条件三点,很浅显高考也不会单出这类的题 2 函数.先是对于函数的描述,有映射定义域对应法则植域;然后是性质,三个,单调性奇偶性周期性;最后是指数函数还有对数函数,是两个基本的函数,要研究他们的性质和图象 3 三角.三角其实就是个工具,比较烦人,公式背下来再多练练用的滚瓜烂熟就行了 4 几何.也就是平面解析几何,用坐标法定量的研究平面几何问题.学几个定义,然后是直线的方程,圆的方程,圆锥曲线方程. 高考的重点一般在 常用函数 常用双曲线+直线 数列 三角 二项式定理 立体几何 排列组合加概率等其他一些知识是比较小的部分 重要的是基础 高一的话上课的基本解题方法一定要熟练掌握 并且不能忘记 到了高三再练习就很麻烦了 还有不要忽视概念 往往很多题目是考概念的 难度方面要视文理科而定 但是70%题目肯定用基本知识就能做的 20%需要结合各种知识并且动脑 真正有难度的题目只有10% 高中数学学习方法谈 进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于学生不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。在此结合高中数学教学内容的特点,谈一下高中数学学习方法,供同学参考。 一、 高中数学与初中数学特点的变化 1、数学语言在抽象程度上突变 初、高中的数学语言有着显着的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。 2、思维方法向理性层次跃迁 高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。 3、知识内容的整体数量剧增 高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。 4、知识的独立性大 初中知识的系统性是较严谨的,给我们学习带来了很大的方便。因为它便于记忆,又适合于知识的提取和使用。但高中的数学却不同了,它是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角比、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。 二、如何学好高中数学 1、养成良好的学习数学习惯。 建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。 2、及时了解、掌握常用的数学思想和方法 学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。 3、逐步形成 “以我为主”的学习模式 数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。

阅读全文

与初中数学包括哪些内容相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:704
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1317
华为手机家人共享如何查看地理位置 浏览:1010
一氧化碳还原氧化铝化学方程式怎么配平 浏览:848
数学c什么意思是什么意思是什么 浏览:1369
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1350
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1022
大学物理实验干什么用的到 浏览:1448
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:829
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1606
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1452
数学中的棱的意思是什么 浏览:1017