① 初一下册数学重点知识点总结归纳
在初一阶段,初一下册数学重点知识点总结归纳有哪些呢?以下是我分享给大家的初一下册数学重点知识点,希望可以帮到你!
初一下册数学重点知识点
1、 单项式:数字与字母的积,叫做单项式。
2、 多项式:几个单项式的和,叫做多项式。
3、 整式:单项式和多项式统称整式。
4、 单项式的次数:单项式中所有字母的指数的和叫单项式的次数。
5、 多项式的次数:多项式中次数最高的项的次数,就是这个多项式的次数。
6、 余角:两个角的和为90度,这两个角叫做互为余角。
7、 补角:两个角的和为180度,这两个角叫做互为补角。
8、 对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。
9、 同位角:在“三线八角”中,位置相同的角,就是同位角。
10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。
11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。
12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。
13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。
14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。
17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
18、全等图形:两个能够重合的图形称为全等图形。
19、变量:变化的数量,就叫变量。
20、自变量:在变化的量中主动发生变化的,变叫自变量。
21、因变量:随着自变量变化而被动发生变化的量,叫因变量。
22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。
23、对称轴:轴对称图形中对折的直线叫做对称轴。
初一下册数学重点试题
1.某中学七年级学生外出进行社会实践活动,如果每辆车坐45人,那么有15个学生没车坐;如果每辆车坐60人,那么可以空出一辆车。问共有几辆车,几个学生?
2.福建欣欣电子有限公司向工商银行申请了甲、乙两种贷款,共计68万元,每年需付出利息8.42万元.甲种贷款每年的利率是12%,乙种贷款每年的利率是13%,求这两种贷款的数额各是多少?
3.某服装厂要生产一批某种型号的学生服装,已知3米长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用600米长的这种布料生产,应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套?
4.某商场按定价销售某种电器时,每台可获利48元,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等.求该电器每台的进价、定价各是多少元?
5.一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.
6.甲、乙二人在上午8时,自A、B两地同时相向而行,上午10时相距36km,二人继续前行,到12时又相距36km,已知甲每小时比乙多走2km,求A,B两地的距离.
7.某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:
(1)春游学生共多少人?原计划租45座客车多少辆?
(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算?
8.光明中学9年级甲、乙两班为希望工程捐款活动中,两班捐款的总数相同,均多于300元且少于400元,已知甲班有一人捐6元,其余每人捐9元;乙班有一人捐13元,其余每人捐8元,求甲、乙两班学生总人数共是多少人?
9.晓跃汽车销售公司到某汽车制造厂选购A、B两种型号的轿车,用300万元可购进A型轿车10辆,B型轿车15辆,用300万元也可以购进A型轿车8辆,B型轿车18辆.
(1)求A、B两种型号的轿车每辆分别为多少万元?
(2)若该汽车销售公司销售1辆A型轿车可获取8000元,销售1辆B型轿车可获利5000元,该汽车销售公司准备用不超过400万元购进A、B两种型号轿车共30辆,且这两种轿车全部售出后总获利不低于20.4万元,问有几种购车方案?在这几种购车方案中,该汽车销售公司将这些轿车全部售出后,分别获利多少万元?
10.双蓉服装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件,B种型号服装10件,需要1810元;若购进A种型号服装12件,B种型号服装8件,需要1880元.
(1)求A、B两种型号的服装每件分别为多少元?
(2)若销售1件A型号服装可获利18元,销售1件B型号服装可获利30元,根据市场需求,服装店老板决定,购进A型服装的数量要比购进B型服装数量的2倍还多4件,且A型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元,问有几种进货方案?如何进货?
11.武汉市江汉一桥维修工程中拟由甲、乙两个工程队共同完成某项目,从两个工程队的资料可以知道:若两个工程队合做24天恰好完成;若两队工程队合做18天后,甲工程队再单独做10天,也恰好完成,请问:
(1)甲、乙两个工程队单独完成该项目各需多少天?
(2)已知甲工程队每天的施工费为0.6万元,乙工程队每天的施工费为0.35万元,要使该项目总的施工费不超过22万元,则乙工程队最少施工多少天?
12.某企业在蜀南竹海收购毛竹进行粗加工,每天可加工8吨,每吨获利800元,如果对毛竹进行精加工,每天可加工1吨,每吨获利4000元.由于受条件限制,每天只能采用一种方式加工,要求在一月内(30天)将这批毛竹全部销售.为此企业厂长召集职工开会,让职工们讨论如何加工销售更合算.甲说:将毛竹全部进行粗加工销售;乙说:30天都进行精加工,未加工的毛竹直接销售;丙说:30天中可以几天粗加工,再用几天精加工后销售,请问厂长采用哪位说的方案获利最大?
初一数学学习方法
一、注重学习内容的衔接
1.初一数学是在小学数学的基础上进行拓展和提高的。难度适中,广度有所加大。它与小学数学的最大的不同在于,初一数学的概念明显增多。小学对于一些概念只要求读懂就可以了,初一的数学概念要求牢牢掌握,要有一种敢于较真的精神,抓住本质细抠内容,在理解的基础上掌握概念、运用概念,它贯穿中学数学学习的始终。
2.小学数学的计算相对简单,中学数学的计算相对繁杂。要尽量培养准确而迅速的计算习惯。这首先需要对前面概念和定义较好的理解和熟练,其次还需要专心和细致,严格要求自己不犯粗心大意的错误,不要为考试低分找客观原因,养成凡事认真仔细的习惯。
3.在小学学习的基础上,培养自己攻克难题的能力。有些学生小学学习过奥数,中学的学习中也会遇到难题,要发扬一种钉子精神,对习题做到一题多解、举一反三,要知难而上,勇于探索。
二、注重学习方法的培养
1.首先要会学习,好的学习方法是努力抓好学习中的各个环节:预习、听讲、复习、总结、考试。课前预习,才能做到有针对性的听讲,带着问题听讲,高质量的听课是中学数学学习的基础和关键,课后复习总结是学习过程的升华,认真完成作业时它的重要体现,不要忽视每一天的作业,正所谓细节决定成败!只有落实好前面的学习任务,加之以一颗平常心、自信心对待考试,才可能在考试中立于不败之地。
2.积极培养自主学习习惯。初一课程设置较小学要多出很多,作为老师,要培养学生独立自主的学习习惯,作为学生更要主动适应学习习惯的改变,要及时主动地发现问题,解决问题,不要将今天的问题过夜!否则后患无穷,要总结出一套适合自己的学习计划,定期检查和回顾其实施情况。
3.学会取人之长,补己之短。在你的身边一定有一些学习较轻松,成绩又好的同学,多向他们学习好的学习方法。要做的一项具体的工作时,准备一个"好题本",随时收录一些解题的好方法,以及自己曾做错的习题改正。几年下来你会发现,你的学习会有飞速的提高,你的解题思路也被有效的打开了,更可贵的事,到中考前,你可以拿出来有针对性的复习,对你来说,只有"它"才是最有针对性的!这样岂不是事半而功倍。
猜你喜欢:
1. 初一数学上册知识点汇总整理
2. 初一数学知识点整理
3. 初一数学必考知识点
4. 初中数学知识点全总结
5. 初一下学期数学所有知识点
② 数学七年级下册知识点
知识的宽度、厚度和精度决定人的成熟度。每一个人比别人成功,只不过是多学了一点知识,多用了一点心而已。接下来我给大家分享关于数学七年级下册知识,希望对大家有所帮助!
数学七年级下册知识1
相交线与平行线
一、相交线 两条直线相交,形成4个角。
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。具有这种关系的两个角,互为邻补角。如:∠1、∠2。
②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。如:∠1、∠3。
③对顶角相等。
二、垂线
1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线: 垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离: 直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。
图片 图片
三、同位角、内错角、同旁内角
两条直线被第三条直线所截形成8个角。
1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。
2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。如:∠3和∠5。
3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。如:∠3和∠6。
四、平行线及其判定
平行线
1.平行:两条直线不相交。互相平行的两条直线,互为平行线。a∥b(在同一平面内,不相交的两条直线叫做平行线。)
2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3.平行公理推论:平行于同一直线的两条直线互相平行。如果b//a,c//a,那么b//c
平行线的判定:
1. 两条平行线被第三条直线所截,如果同位角相等,那么这两条直线平行。(同位角相等,两直线平行)
2. 两条平行线被第三条直线所截,如果内错角相等,那么这两条直线平行。(内错角相等,两直线平行)
3. 两条平行线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。(同旁内角互补,两直线平行)
推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
平行线的性质
(一)平行线的性质
1.两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
2.两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)
3.两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角相等)
(二)命题、定理、证明
1.命题的概念:判断一件事情的语句,叫做命题。
2.命题的组成:每个命题都是题设、结论两部分组成。
题设是已知事项;结论是由已知事项推出的事项。命题常写成“如果??,那么??”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。
3.真命题:正确的命题,题设成立,结论一定成立。
4.假命题:错误的命题,题设成立,不能保证结论一定成立。
5.定理:经过推理证实得到的真命题。(定理可以做为继续推理的依据)
6.证明:推理的过程叫做证明。
平移
1.平移:平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移变换 (简称平移),平移不改变物体的形状和大小。
2.平移的性质
①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。连接各组对应点的线段平行且相等。
数学七年级下册知识2
平面直角坐标系
一、平面直角坐标系
有序数对
1.有序数对:用两个数来表示一个确定的位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)
2.坐标:数轴(或平面)上的点可以用一个数(或数对)来表示,这个数(或数对)叫做这个点的坐标。
平面直角坐标系
1.平面直角坐标系:在平面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。
2.X轴:水平的数轴叫X轴或横轴。向右方向为正方向。
3.Y轴:竖直的数轴叫Y轴或纵轴。向上方向为正方向。
4.原点:两个数轴的交点叫做平面直角坐标系的原点。
对应关系:平面直角坐标系内的点与有序实数对一一对应。
坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
象限
1.象限:X轴和Y轴把坐标平面分成四个部分,也叫四个象限。右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般,在x轴和y轴取相同的单位长度。
2.象限的特点:
1、特殊位置的点的坐标的特点:
(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2)第一、三象限角平分线上的点横、纵坐标相等;
第二、四象限角平分线上的点横、纵坐标互为相反数。
(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
2、点到轴及原点的距离:
点到x轴的距离为|y|;
点到y轴的距离为|x|;
点到原点的距离为x的平方加y的平方再开根号;
3、三大规律
(1)平移规律:
点的平移规律
左右平移→纵坐标不变,横坐标左减右加;
上下平移→横坐标不变,纵坐标上加下减。
图形的平移规律 找特殊点
(2)对称规律
关于x轴对称→横坐标不变,纵坐标互为相反数;
关于y轴对称→横坐标互为相反数,纵坐标不变;
关于原点对称→横纵坐标都互为相反数。
(3)位置规律
各象限点的坐标符号:(注意:坐标轴上的点不属于任何一个象限)
图片
二、坐标 方法 的简单应用
用坐标表示地理位置的过程:
1.建立坐标系,选择一个合适的参照点为原点,确定X轴和Y轴的正方向。
2.根据具体问题确定适当的比例尺,在坐标轴上标出单位长度。
3.在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
用坐标表示平移
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就把原图形向右(左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去) 一个正数a,相应的新图形就把原图形向上(下)平移a个单位长度。
用坐标表示地理位置的过程:
1.建立坐标系,选择一个合适的参照点为原点,确定X轴和Y轴的正方向。
2.根据具体问题确定适当的比例尺,在坐标轴上标出单位长度。
3.在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
用坐标表示平移
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就把原图形向右(左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去) 一个正数a,相应的新图形就把原图形向上(下)平移a个单位长度。
数学七年级下册知识3
不等式与不等式组
一、不等式
不等式及其解集
1.不等式:用不等号(包括:>、图片、图片、<、≠)表示大小关系的式子。
2.不等式的解:使不等式成立的未知数的值,叫不等式的解。
3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
不等式的性质:
性质1:如果a>b,b>c,那么a>c(不等式的传递性).
性质2:不等式的两边同加(减)同一个数(或式子),不等号的方向不变。如果a>b,那么a+c>b+c(不等式的可加性).
性质3: 不等式的两边同乘(除以)同一个正数,不等号的方向不变。不等式的两边同乘(除以)同一个负数,不等号的方向改变。
如果a>b,c>0,那么ac>bc;如果a>b,c<0,ac<bc.(不等式的乘法法则)< span=""></bc.(不等式的乘法法则)<>
性质4:如果a>b,c>d,那么a+c>b+d. (不等式的加法法则)
性质5:如果a>b>0,c>d>0,那么ac>bd. (可乘性)
性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.当0<n<1时也成立. (乘方法则) < span=""></n<1时也成立. (乘方法则) <>
二、一元一次不等式
1.一元一次不等式:含有一个未知数,未知数的次数是1的不等式。
2、不等式的解法:
步骤:去分母,去括号,移项,合并同类项,系数化为一;
注意:去分母与系数化为一要特别小心,因为要在不等式两端同时乘或除以某一个数,要考虑不等号的方向是否发生改变的问题。
三、一元一次不等式组
1.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2.不等式组的解:几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集。解不等式组就是求它的解集。
3.解不等式组:先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式的解集。
解一元一次不等式组的一般方法:
以两条不等式组成的不等式组为例,
①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”
②若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”
③若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集。若x表示不等式的解集,此时一般表示为a<x<b,或a≤x≤b。此乃“相交取中
④若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解。此乃“向背取空”不等式组的解集的确定方法(a>b)
数学七年级下册知识点相关 文章 :
★ 初一数学下册知识点
★ 初中数学七年级下册知识点提纲
★ 七年级下数学知识点总结
★ 初一数学下册知识点归纳总结
★ 七年级下册数学复习提纲
★ 初一数学下册基本知识点总结
★ 七年级下册数学的知识点
★ 初一数学下册知识点汇总
★ 初一下期数学知识点总结
★ 七年级数学下册知识点总结
③ 数学中成对出现的角有哪些 在七下为止学过的6种成对出现的角有哪些
补角
余角
内错角
同位角
对顶角
同旁内角
④ 七年级下册数学第二单元知识点整理归纳
相交线与平行线
1.同一平面内,两直线不平行就相交。
2.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
3.垂直定义:两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
4.垂直三要素:垂直关系,垂直记号,垂足
5.垂直公理:过一点有且只有一条直线与已知直线垂直。
6.垂线段最短;
7.点到直线的距离:直线外一点到这条直线的垂线段的长度。
8.两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧),内错角Z(在两条直线内部,位于第三条直线两侧),同旁内角U(在两条直线内部,位于第三条直线同侧)。
9.平行公理:过直线外一点有且只有一条直线与已知直线平行。
10.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//cP174题
11.平行线的判定。
结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。平行线的性质:1.两直线平行,同位角相等。2.两直线平行,内错角相等。3.两直线平行,同旁内角互补。
平行线的判定第1课时
1、C
2、ADBCADBC180°—∠1—∠2∠3+∠4
3、ADBEADBCAECD同位角相等,两直线平行
4、题目略
MNAB内错角相等,两直线平行
MNAB同位角相等,两直线平行
两直线平行于同一条直线,两直线平行
5、B
6、∠BED∠DFC∠AFD∠DAF
7、证明:
∵AC⊥AEBD⊥BF
∴∠CAE=∠DBF=90°
∵∠1=35°∠2=35°
∴∠1=∠2
∵∠BAE=∠1+∠CAE=35°+90°=125°∠CBF=∠2+∠DBF=35°+90°=125°
∴∠CBF=∠BAE
∴AE∥BF(同位角相等,两直线平行)
8、题目略
(1)DEBC
(2)∠F同位角相等,两直线平行
(3)∠BCFDEBC同位角相等,两直线平行
能力提升
9、∠1=∠5或∠2=∠6或∠3=∠7或∠4=∠8
10、有,AB∥CD
∵OH⊥AB
∴∠BOH=90°
∵∠2=37°
∴∠BOE=90°—37°=53°
∵∠1=53°
∴∠BOE=∠1
∴AB∥CD(同位角相等,两直线平行)
11、已知互补等量代换同位角相等,两直线平行
12、平行,证明如下:
∵CD⊥DA,AB⊥DA
∴∠CDA=∠2+∠3=∠BAD=∠1+∠4=90°(互余)
∵∠1=∠2(已知)
∴∠3=∠4
∴DF∥AE(内错角相等,两直线平行)
探索研究
13、对,证明如下:
∵∠1+∠2+∠3=180°∠2=80°
∴∠1+∠3=100°
∵∠1=∠3
∴∠1=∠3=50°
∵∠D=50°
∴∠1=∠D=50°
∴AB∥CD(内错角相等,两直线平行)
14、证明:
∵∠1+∠2+∠GEF=180°(三角形内角和为180°)且∠1=50°,∠2=65°
∴∠GEF=180°—65°—50°=65°
∵∠GEF=∠BEG=1/2∠BEF=65°
∴∠BEG=∠2=65°
∴AB∥CD(内错角相等,两直线平行)
相交线与平行线
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:
同位角F(在两条直线的同一旁,第三条直线的同一侧)
内错角Z(在两条直线内部,位于第三条直线两侧)
同旁内角U(在两条直线内部,位于第三条直线同侧)
4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、垂直三要素:垂直关系,垂直记号,垂足。
6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最短。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度。
9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//c
10、平行线的判定:
①同位角相等,两直线平行。②内错角相等,两直线平行。 ③同旁内角互补,两直线平行。
11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。
12、平行线的性质:
①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
13、平面上不相重合的两条直线之间的位置关系为_______或________
14、平移:①平移前后的两个图形形状大小不变,位置改变。②对应点的线段平行且相等。
平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
15、命题:判断一件事情的语句叫命题。
命题分为题设和结论两部分;题设是如果后面的,结论是那么后面的。
命题分为真命题和假命题两种;定理是经过推理证实的真命题。
概率
一、事件:
1、事件分为必然事件、不可能事件、不确定事件。
2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。
3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。
4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。
二、等可能性:是指几种事件发生的可能性相等。
1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。
2、必然事件发生的概率为1,记作P(必然事件)=1;
3、不可能事件发生的概率为0,记作P(不可能事件)=0;
4、不确定事件发生的概率在0—1之间,记作0
三、几何概率
1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。
2、求几何概率:
(1)首先分析事件所占的面积与总面积的关系;
(2)然后计算出各部分的面积;
(3)最后代入公式求出几何概率。
三角形
1、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。
2、判断三条线段能否组成三角形。
①a+b>c(ab为最短的两条线段)
②a—b
3、第三边取值范围:a—b
4、对应周长取值范围
若两边分别为a,b则周长的取值范围是2a
如两边分别为5和7则周长的取值范围是14
5、三角形中三角的关系
(1)、三角形内角和定理:三角形的三个内角的和等于1800。
n边行内角和公式(n—2)
(2)、三角形按内角的大小可分为三类:
(1)锐角三角形,即三角形的三个内角都是锐角的三角形;
(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。
注:直角三角形的性质:直角三角形的两个锐角互余。
(3)钝角三角形,即有一个内角是钝角的三角形。
(3)、判定一个三角形的形状主要看三角形中角的度数。
(4)、直角三角形的面积等于两直角边乘积的一半。
6、三角形的三条重要线段
(1)、三角形的角平分线:
1、三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
2、任意三角形都有三条角平分线,并且它们相交于三角形内一点。(内心)
(2)、三角形的中线:
1、在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。
2、三角形有三条中线,它们相交于三角形内一点。(重心)
3、三角形的中线把这个三角形分成面积相等的两个三角形
(3)、三角形的高线:
1、从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。
2、任意三角形都有三条高线,它们所在的直线相交于一点。(垂心)
3、注意等底等高知识的考试
7、相关命题:
1)三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。
2)锐角三角形中的锐角的取值范围是60≤X<90。锐角不小于60度。
3)任意一个三角形两角平分线的夹角=90+第三角的一半。
4)钝角三角形有两条高在外部。
5)全等图形的大小(面积、周长)、形状都相同。
6)面积相等的两个三角形不一定是全等图形。
7)能够完全重合的两个图形是全等图形。
8)三角形具有稳定性。
9)三条边分别对应相等的两个三角形全等。
10)三个角对应相等的两个三角形不一定全等。
11)两个等边三角形不一定全等。
12)两角及一边对应相等的两个三角形全等。
13)两边及一角对应相等的两个三角形不一定全等。
14)两边及它们的夹角对应相等的两个三角形全等。
15)两条直角边对应相等的两个直角三角形全等。
16)一条斜边和一直角边对应相等的两个三角形全等。
17)一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。
18)一角和一边对应相等的两个直角三角形不一定全等。
19)有一个角是60的等腰三角形是等边三角形。
8、全等图形
1、两个能够重合的图形称为全等图形。
2、全等图形的性质:全等图形的形状和大小都相同。
9、全等三角形
1、能够重合的两个三角形是全等三角形,用符号“≌”连接,读作“全等于”。
2、用“≌”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上。
10、全等三角形的判定
1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
2、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。
3、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。
4、两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。
11、做三角形(3种做法:已知两边及夹角、已知两角及夹边、已知三边、已知两角及一边可以转化为已知已知两角及夹边)。
12、利用三角形全等测距离;
13、、直角三角形全等的条件:在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。
变量之间的关系
一、理论理解
1、若Y随X的变化而变化,则X是自变量Y是因变量。
自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。
3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180—2x。
2、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。⑤总价=单价×总量。⑥平均速度=总路程÷总时间
二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的.对应值。列表法的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。
三、关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。
四、图像注意:
a、认真理解图象的含义,注意选择一个能反映题意的图象;
b、从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点
八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:
1、随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));
2、随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小)。
注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述。例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等。
九、估计(或者估算)对事物的估计(或者估算)有三种:
1、利用事物的变化规律进行估计(或者估算)。例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数—首数)/次数或相差年数)等等;
2、利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;
3、利用关系式:首先求出关系式,然后直接代入求值即可。
学好数学的方法是什么
1、学数学要善于思考,自己想出来的答案远比别人讲出来的答案印象深刻。
2、课前要做好预习,这样上数学课时才能把不会的知识点更好的消化吸收掉。
3、数学公式一定要记熟,并且还要会推导,能举一反三。
4、学好数学最基础的就是把课本知识点及课后习题都掌握好。
5、数学80%的分数来源于基础知识,20%的分数属于难点,所以考120分并不难。
6、数学需要沉下心去做,浮躁的人很难学好数学,踏踏实实做题才是硬道理。
7、数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。
8、数学最主要的就是解题过程,懂得数学思维很关键,思路通了,数学自然就会了。
9、数学不是用来看的,而是用来算的,或许这一秒没思路,当你拿起笔开始计算的那一秒,就豁然开朗了。
10、数学题目不会做,原因之一就是例题没研究明白,所以数学书上的例题绝对不要放过。
数学经典学习思维
假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
认识三角形
1、关于三角形的概念及其按角的分类
由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。这里要注意两点:
①组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;②三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点。
三角形按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。
2、关于三角形三条边的关系
根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。
三角形三边关系的另一个性质:三角形任意两边之差小于第三边。对于这两个性质,要全面理解,掌握其实质,应用时才不会出错。设三角形三边的长分别为a、b、c则:
①一般地,对于三角形的某一条边a来说,一定有|b—c|
②特殊地,如果已知线段a最大,只要满足b+c>a,那么a、b、c三条线段就能构成三角形;如果已知线段a最小,只要满足|b—c|
②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
3、关于三角形的中线、高和中线
①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;
③任意一个三角形的三条角平分线、三条中线都在三角形的内部。但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
快速提高数学成绩的方法
1、掌握正确做题方法
数学学习离不开做题,对于大多数学生来说很难做到举一反三,既然做不到我们就需要用用大量的题来弥补,但是做题也不能盲目的去做。第一,做题要由易到难,第二,做题要先专题后限时模考,第三,做题要学会整理错题,第四,做题要学会分析试题,第五,做题要会猜题。
2、巩固基础知识
掌握初中数学知识点是由浅入深的,只有在掌握了基础知识的前提下,识记理解公式、定理,运用公式、定理分析解决问题,才能对数学问题进一步深化与提高。
3、发现规律
在做题的过程中要多发现规律,不要总是硬套公式,可以尝试一下思维的转换,这样可能给自己带了不一样的转机,其实数学和其他的科目是一样,可以用其他的话代替,但是意思并没有转变,数学的公式也是一样,最终的答案是一个。
4、保持好心态
心态问题是影响考试的最重要的原因。走进考场就要有舍我其谁的霸气。要信心十足,要相信自己已经读了一千天的初中,进行了三百多天的复习,做了三千至四千道题,养兵千日,用兵一时,现在是收获的时候,自己会取得好成绩的。反过来,如果进考场就底气不足,必定会影响自己的发挥。
5、总结梳理,提炼方法。
数学复习的最后阶段,对于知识点的总结梳理,应重视教材,立足基础,在准确理解基本概念,掌握公式、法则、定理的实质及其基本运用的基础上,弄清概念之间的联系与区别。对于题型的总结梳理,应摆脱盲目的题海战术,对重点习题进行归类,找出解题规律,要关注解题的思路、方法、技巧。
三角函数公式
锐角三角函数公式
sinα=∠α的对边/斜边
cosα=∠α的邻边/斜边
tanα=∠α的对边/∠α的邻边
cotα=∠α的邻边/∠α的对边