❶ 一个证明题,若A是B的子集,则UA是UB的子集.这个里面的U是什么意思,如果是n又是什么意思(离散数学)
不管是U或者是n 只是一个字母 你也可以用x y c代替都行
意思也是一个集合 除了全集以外的任何集合 空集也行
UA即U并A UB即U并B
若A是B的子集,则UA是UB的子集 成立
❷ 离散数学中啥叫阶数
矩阵 "阶数" 的定义。
一个m行n列的矩阵简称为m*n矩阵,特别把一个n*n的矩阵成为n阶正方阵,或者n阶矩阵。
此外,行列式的阶数与矩阵类似,但是行列式必然为一个正方阵。
由上面定义可知,说一个矩阵为n阶矩阵,即默认该矩阵为一个n行n列的正方阵。高等代数中常见的可逆矩阵,对称矩阵等问题都是建立在这种正方阵基础上的。
实际上,阶数只代表正方形矩阵的大小,并没有太多的意义。与其较为相关的矩阵的“秩”定义为一个矩阵中不等于0的子式的最大阶数。但需要注意的是这里的“子式”是指行列式。
❸ 离散数学中几阶几阶 是怎么区分 或者定义的
设代数系统<G,*>是群,单位元是e,元素a的阶指的是使得x^n=e的最小正整数n。可称x是n阶元。若不存在这样的正整数,则称x是无限阶元。(这里的x^n代表的是n个x的运算,未必就是相乘)
❹ R,N,E在数学中分别表示什么集合
R :实数.包括有理数和无理数(无理数是指无限不循环小数)
N :自然数.像0,1,2,3,…(注:0已被归类为自然数)
没有E表示的集合
1、全体非负整数的集合通常简称非负整数集(或自然数集),记作N
2、非负整数集内排除0的集,也称正整数集,记作N+(或N*)
3、全体整数的集合通常称作整数集,记作Z
4、全体有理数的集合通常简称有理数集,记作Q
5、全体实数的集合通常简称实数集,记作R
集合的表示方法:常用的有列举法和描述法。
1、列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。{1,2,3,……}
2、描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0<x<π}
3、图式法(Venn图)﹕为了形象表示集合,我们常常画一条封闭的曲线(或者说圆圈),用它的内部表示一个集合。