1. 几何折叠原理
考虑无限大体中一长度为2a 的主裂纹。取极化方向垂直于裂纹面。直角坐标系x1一x2 的原点位于裂纹中心,x1轴沿裂纹方向,x2 轴垂直于裂纹沿极化方向。材料在远处受机械和电场载荷的共同作用。由主裂纹右端萌生的偏折裂纹与x1轴成θ角。
在研究裂纹偏折时,通常采用分布位错的方法,将裂纹偏折的部分等效为连续分布的位错。采用这一位错等效,Lo (1978)最先研究了各向同性线弹性体中的偏折裂纹。Obata 等(1989),Azhdari 和Nemat-Nasser (1996a,b)分析了各向异性线弹性体中裂纹偏折的问题。通过进一步发展分布位错的方法,Miller 和Stock (1989),Wang 等(1992),Wang (1994)研究了各向异性线弹性体中界面裂纹的偏折问题。[1]
以下亦采用分布位错的方法求解压电裂纹的偏折问题(Zhu与Yang,1999b)。与单纯的力学分析有所不同,偏折裂纹的上下表面既存在着位移间断,也存在着电势间断。滑移面上电势间断问题的解最先由Barnett和Lothe(1975)给出。利用这一结果,Deeg(1980)和Pak(1990)将无限大基体中的主裂纹等效为连续分布的位错和电偶极子,求解了主裂纹尖端的电弹场。Fulton和Gao(1997)利用电偶极子的基本解,求解了裂纹前方延长线上电位移饱和区的问题。