导航:首页 > 数字科学 > 数学建模中建模手应该掌握什么

数学建模中建模手应该掌握什么

发布时间:2023-02-27 05:59:31

⑴ 参加数学建模需要学习哪些方面的知识

参加数学建模需要学习以下方面的知识。



首先,需要弄清楚建模的过程。建议找本数模历年的论文看看,理清思路,步骤等。


其次,看点数学的知识。重点是优化、统计。几乎每年都会有题目是关于优化的。


第三、看一下算法相关的。当然与上面的第二条有所重复了。并用MATLAB maple等实现以下。


第四、学习一下编程的知识,比如C++,MATLAB,lingo等。


第五、找到两个跟你互补的人,组成团队,有人侧重编程,有人侧重论文,有人侧重数学等等。


数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。


资料来源:网络—数学建模

⑵ 参加数学建模大赛需要大概要掌握哪些方面的知识

数学建模竞赛的内容:

竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。

题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。


数学建模大赛步骤:

建模是一个非常复杂和创造性的工作。现实世界中的事物是如此的多样化和繁杂,以至于不可能指定如何使用一些规则和规则来构建各种模型。下面是对建模的一般步骤和原则的概括总结:

1、模型准备:首先要了解问题的实际背景,明确课题的要求,收集各种必要的信息。

2、模型假设:为了使用数学方法,通常需要对问题做出合理的假设,突出问题的主要特征,忽略问题的次要方面。

3、模型组成:根据所做的假设和事物之间的关系,构造出各量之间的关系,构成问题。

4、模型求解:利用已知的数学方法来求解前一步得到的数学问题,往往需要进一步的简化或假设。对于数学问题,要尽可能小心地使用简单的数学工具。

⑶ 为学习数学建模打基础,需要学习哪些数学作为基础

1.基础:高等数学、线性代数、概率论与数理统计x0dx0a2.专业方面:运筹学(主要针对最优化问题),其他数学建模用书(主要看方法,例如层次分析法等)x0dx0a3.软件方面:lingo、matlab、origin等x0dx0a5.美赛还要看翻译(所以专业英语要好好学)、排版比较重要x0dx0a总结:数学建模不是纯粹的数学知识,有时候数学建模用的数学知识很少,所以要了解建模过程,掌握建模方法(方法非常重要)。平时多看一些特等奖的建模论文,你会有意想不到的收获

⑷ 数学建模需要哪些数学知识

数学分析,高等代数,概率统计。数学建模最主要的问题在知识点上无非是这几块:1、多元变量求最值问题,最终能够将其转化为拉格朗日乘子法;2、高维线性规划,线性回归问题,用线性代数的矩阵乘法来解决;3、有可能需要用到随机过程的相关知识,以及应用大数定理,以及蒙特卡洛算法,用概率统计为工具进行解决。

⑸ 初学者,数学建模需要准备些什么东西

数学建模应当掌握的十类算法
‍‍ 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算 法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要 处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题 属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、 Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉 及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计 中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是 用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实 现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛 题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好 使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只 认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非 常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常 用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调 用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该 要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab 进行处理)
数学建模资料
竞赛参考书
l、中国大学生数学建模竞赛,李大潜主编,高等教育出版社(1998). 2、大学生数学建模竞赛辅导教材,(一)(二)(三),叶其孝主编,湖南教育 出版社(1993,1997,1998). 3、数学建模教育与国际数学建模竞赛 《工科数学》专辑,叶其孝主编, 《工科数学》杂志社,1994).
国内教材、丛书
1、数学模型,姜启源编,高等教育出版社(1987年第一版,1993年第二版,2003年第三版;第一版在 1992年国家教委举办的第二届全国优秀教材评选中获"全国优秀教材奖"). 2、数学模型与计算机模拟,江裕钊、辛培情编,电子科技大学出版社,(1989). 3、数学模型选谈(走向数学从书),华罗庚,王元着,王克译,湖南教育出版社;(1991). 4、数学建模--方法与范例,寿纪麟等编,西安交通大学出版社(1993). 5、数学模型,濮定国、 田蔚文主编,东南大学出版社(1994). 6..数学模型,朱思铭、李尚廉编,中山大学出版社,(1995) 7、数学模型,陈义华编着,重庆大学出版社,(1995) 8、数学模型建模分析,蔡常丰编着,科学出版社,(1995). 9、数学建模竞赛教程,李尚志主编,江苏教育出版社,(1996). 10、数学建模入门,徐全智、杨晋浩编,成都电子科大出版社,(1996). 11、数学建模,沈继红、施久玉、高振滨、张晓威编,哈尔滨工程大学出版社,(1996). 12、数学模型基础,王树禾编着,中国科学技术大学出版社,(1996). 13、数学模型方法,齐欢编着,华中理工大学出版社,(1996). 14、数学建模与实验,南京地区工科院校数学建模与工业数学讨论班编,河海大学 出版社,(1996). 15、数学模型与数学建模,刘来福、曾文艺编,北京师范大学出版杜(1997). 16. 数学建模,袁震东、洪渊、林武忠、蒋鲁敏编,华东师范大学出版社. 17、数学模型,谭永基,俞文吡编,复旦大学出版社,(1997). 18、数学模型实用教程,费培之、程中瑗层主编,四川大学出版社,(1998). 19、数学建模优秀案例选编(工科数学基地建设丛书),汪国强主编,华南理工大学出版社,(1998). 20、经济数学模型(第二版)(工科数学基地建设丛书),洪毅、贺德化、昌志华 编着,华南理工大学出版社,(1999). 21、数学模型讲义,雷功炎编,北京大学出版社(1999). 22、数学建模精品案例,朱道元编着,东南大学出版社,(1999), 23、问题解决的数学模型方法,刘来福,曾文艺编着、北京师范大学出版社,(1999). 24、数学建模的理论与实践,吴翔,吴孟达,成礼智编着,国防科技大学出版社, (1999). 25、数学建模案例分析,白其岭主编,海洋出版社,(2000年,北京). 26、数学实验(高等院校选用教材系列),谢云荪、张志让主编,科学出版社,(2000). 27、数学实验,傅鹏、龚肋、刘琼荪,何中市编,科学出版社,(2000). 28、数学建模与数学实验,赵静、但琦编,高等教育出版社,(2000).
国外参考书(中译本)
1、数学模型引论, E.A。Bender着,朱尧辰、徐伟宣译,科学普及出版社(1982). 2、数学模型,[门]近藤次郎着,官荣章等译,机械工业出版社,(1985). 3、微分方程模型,(应用数学模型丛书第1卷),[美]W.F.Lucas主编,朱煜民等 译,国防科技大学出版社,(1988). 4、政治及有关模型,(应用数学模型丛书第2卷),[美W.F.Lucas主编,王国秋 等译,国防科技大学出版社,(1996). 5、离散与系统模型,(应用数学模型丛书第3卷),[美w.F.Lucas主编,成礼智 等译,国防科技大学出版社,(1996). 6、生命科学模型,(应用数学模型丛书第4卷),[美1W.F.Lucas主编,翟晓燕等 译,国防科技大学出版社,(1996). 7、模型数学--连续动力系统和离散动力系统,[英1H.B.Grif6ths和A.01dknow 着,萧礼、张志军编译,科学出版社,(1996). 8、数学建模--来自英国四个行业中的案例研究,(应用数学译丛第4号), 英]D.Burglles等着,叶其孝、吴庆宝译,世界图书出版公司,(1997)
专业性参考书
(这方面书籍很多,仅列几本供参考) : 1、水环境数学模型,[德]W.KinZE1bach着,杨汝均、刘兆昌等编纂,中国建筑工 业出版社,(1987). 2、科技工程中的数学模型,堪安琦编着,铁道出版社(1988) 3、生物医学数学模型,青义学编着,湖南科学技术出版杜(1990). 4、农作物害虫管理数学模型与应用,蒲蛰龙主编,广东科技出版社(1990). 5、系统科学中数学模型,欧阳亮编着, E山东大学出版社,(1995). 6、种群生态学的数学建模与研究,马知恩着,安徽教育出版社,(1996) 7、建模、变换、优化--结构综合方法新进展,隋允康着,大连理工大学出版社, (1986) 8、遗传模型分析方法,朱军着,中国农业出版社(1997). (中山大学数学系王寿松编辑,2001年4月)
过程
模型准备
了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
模型假设
根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
模型建立
在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。
模型求解
利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。
模型分析
对所得的结果进行数学上的分析。
模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
模型应用
应用方式因问题的性质和建模的目的而异。

1、努力学习数学知识,完善自己的知识体系,尤其是与数学相关的知识体系,比如高等数学、工程数学和应用数学的相关知识;
2、扩充自己的知识面,你可以看到很多赛题都是很现实的社会热点问题,相关的背景知识是非常必要的;
3、多看一些案例分析的教程,在学习案例分析时的注意点是:如何考虑现实问题中的各个因素,综合运用所学知识,建立适当的模型;如何进行模型的优化;如何求解模型;如何解释模型的解。
还要逐步去理解数学建模中最难的三个问题,1、如何用学到的数学思想来表述所面对的问题,所谓的建模。2、应用学到的数学知识解刚刚建立的数学模型,并进行优化。3、将刚刚得到的数学上的解解释为现实问题中的现象或者是方法。这三个过程体现了一个“现实——>数学——>现实”的一个过程。这其实就是最难的地方。这需要你首先了解面临的实际问题,然后从现实中转入数学,再从数学中跳出来回到现实。
4、说到matlab,我建议你借一本matlab手册做参考书就行了!毕竟matlab只是实现你数学模型的基础,这不是说matlab不重要,其实matlab也很重要!
祝你快乐!

阅读全文

与数学建模中建模手应该掌握什么相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:736
乙酸乙酯化学式怎么算 浏览:1400
沈阳初中的数学是什么版本的 浏览:1346
华为手机家人共享如何查看地理位置 浏览:1038
一氧化碳还原氧化铝化学方程式怎么配平 浏览:880
数学c什么意思是什么意思是什么 浏览:1403
中考初中地理如何补 浏览:1293
360浏览器历史在哪里下载迅雷下载 浏览:696
数学奥数卡怎么办 浏览:1383
如何回答地理是什么 浏览:1018
win7如何删除电脑文件浏览历史 浏览:1050
大学物理实验干什么用的到 浏览:1479
二年级上册数学框框怎么填 浏览:1695
西安瑞禧生物科技有限公司怎么样 浏览:958
武大的分析化学怎么样 浏览:1243
ige电化学发光偏高怎么办 浏览:1332
学而思初中英语和语文怎么样 浏览:1646
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1481
数学中的棱的意思是什么 浏览:1053