1. 世界数学史分为哪四个时期
学术界通常将数学发展划分为以下四个时期:数学形成时期、初等数学时期、变量数学时期、近现代数学时期。
一、数学形成时期;萌芽时期是最初的数学知识积累时期,是数学发展过程中的渐变阶段。这一时期的数学知识是零散的、初步的、非系统的,但是这是数学发展史的源头,为数学后续的发展奠定了基础。
这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。
中国历史悠久,发掘出来的大量石器、陶器、青铜器、龟甲以及兽骨上面的图形和铭文表明: 几何观念远在旧石器时代就已经在中国逐步形成。早在五六千年前,古中国就有了数学符号,到三千多年前的商朝,刻在甲骨或陶器上的数字已十分常见。
这时,自然数记数都采用了十进位制。甲骨文中就有从一到十再到百、千、万的十三个记数单位。这说明古中国也形成了数学的基本概念。
二、初等数学时期(公元前600年至17世纪中叶);初等数学时期从公元前五世纪到公元十七世纪,延续了两千多年、由于高等数学的建立而结束。
这个时期最明显的结果就是系统地创立了初等数学,也就是现在中小学课程中的算术、初等代数、初等几何(平面几何和立体几何)和平面三角等内容。
初等数学时期可以根据内容的不同分成两部分,几何发展的时期(到公元二世纪)和代数优先发展时期(从二世纪到十七进纪)。又可以按照历史条件的不同把它分成“希腊时期”、“东方时期”和“欧洲文艺复兴时期”。
希腊时期正好和希腊文化普遍繁荣的时代一致。希腊是一个文明古国,但是,和四大文明古国巴比伦、埃及、印度、中国相比,在文明史上,希腊文明要晚一段时间。
三、变量数学时期(17世纪中叶至19世纪20年代);变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分(Calculus),即高等数学中研究函数的微分。它是数学的一个基础学科。
内容主要包括极限、微分学、积分学、方程及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
四、近现代数学时期(19世纪20年代);现代数学。现代数学时期,大致从19世纪初开始。数学发展的现代阶段的开端,以其所有的基础。代数、几何、分析中的深刻变化为特征。近代数学是研究数量、结构、变化、空间以及信息等概念的一门学科。
17世纪,数学的发展突飞猛进,实现了从常量数学到变量数学的转折。中国近代数学的研究是从1919年五四运动以后才真正开始的。
(1)文明古国时代有哪些数学历史扩展阅读:
历史介绍:
数学史研究的任务在于,弄清数学发展过程中的基本史实,再现其本来面貌,同时透过这些历史现象对数学成就、理论体系与发展模式作出科学、合理的解释、说明与评价,进而探究数学科学发展的规律与文化本质。作为数学史研究的基本方法与手段,常有历史考证、数理分析、比较研究等方法。
史学家的职责就是根据史料来叙述历史,求实是史学的基本准则。从17世纪始,西方历史学便形成了考据学,在中国出现更早,尤鼎盛于清代乾嘉时期,时至今日仍为历史研究之主要方法,只不过随着时代的进步,考据方法在不断改进,应用范围在不断拓宽而已。
当然,应该认识到,史料存在真伪,考证过程中涉及到考证者的心理状态,这就必然影响到考证材料的取舍与考证的结果。就是说,历史考证结论的真实性是相对的。同时又应该认识到,考据也非史学研究的最终目的,数学史研究又不能为考证而考证。
2. 数学的发展历史 古今中外
数学知识伴随着人类文明的产生而起源,并率先在几个文明古国开始了漫长的原始积累过程,人类的祖先为我们留下了珍贵的、可供研究的原始资料,最着名的古埃及象形文字纸草书和巴比伦楔形文字泥板书,较为集中地反映了古埃及数学和巴比的水平,它们被视为人类早期数学知识积累的代表. 古埃及纸草书,是用尼罗河流域沼泽地水生植物的茎皮压制、粘连成纸草卷,用天然涂料液书写而成的.有两份纸草书直接书写着数学内容.一份叫做“莫斯科纸草”,大约出自公元前1850年左右,它包括25个数学问题.这份纸草书于1893年被俄国人戈兰尼采夫买得,也称之为“戈兰尼采夫纸草”,现藏莫斯科美术博物馆.另一份叫做“莱因特纸草”,大约成书于公元前1650年左右,开头写有:“获知一切奥秘的指南”的字样,接着是作者阿默士从更早的文献中抄下来的85个数学问题.这份纸草书于1858年被格兰人莱因特购得,后为博物馆收藏.这两份草书是我们研究古埃及数学的重要资料,其内容丰富,记述了古埃及的记数法、整数四则运算、单位分数的独特用法、试位法、求几何图形的面积、体积问题,以及数学在生产、生活初中中的应用问题. 古巴比伦泥板书,是用截面呈三角形的利器作笔,在将干未干的胶泥板上刻写而成的,由于字体为楔形笔划,故称之为楔形文字泥板,从19世纪前期至今,相继出土了这种泥板有50万块之多.它们分别属于公元前2100年苏美尔文化末期,公元前1790年至公元前1600年间汉莫拉比时代和公元前600年至公元300年间新巴比伦帝国及随后的波斯、塞流西得时代.其中,大约有300至400块是数学泥板,数学泥板中又以数表居多,据信这些数学表是用来运算和解题的.这些古老的泥板,现在散藏于世界各地许多博物馆,并且被一一编号,成为我们研究巴比伦数学最可靠的资料.巴比伦数学从整体上讲比古埃及数学高明,古巴比伦人采用60进位制记数法,并计算出倒数表、平方表、立方表、平方根表和立方根表,其中2的平方根近似为1.414213.巴比伦的代数有相当水平,他们用语言文字叙述方程问题及其解法,常用特殊的“长”、“宽”、“面积”等字眼表示未知量,除求解二次、三次方程的问题之外,也有一些数论性质的问题.巴比伦的几何似乎没有古埃及的几何那么重要,只是收罗了一些计算简单图形的面积、体积的法则,也许他们只是在解决实际问题时才搞点几何.此外,巴比伦数学中有很明显的商业、农业和天文的应用背景. 我们可以说,在人类早期数学知识积累过程中,由于计数物件的需要,产生了自然数,随着记数法的产生和发展,逐渐形成了运算,导致算术的产生;由于计量实物的需要,产生了简单的几何,随着农业、建筑业、手工业及天文观测的发展,逐渐积累了有关这些的基本性质和相互关系的经验知识,于是几何学萌芽了;由于商业计算、工程计算、天文的需要,在算术计算技巧的基础上,逐渐积累起代数学基本知识.但是,在这个阶段上,直到公元前6世纪,无论如何也找不到我们今天所谓的“理性的数学”,而只是一种初级的“经验的数学”.
麻烦采纳,谢谢!
3. 世界数学发展史
我们伟大的祖国,作为世界四大文明古国之一,在数学发展的历史长河中,曾经作出许多杰出的贡献。这些光辉的成就,远远走在世界的前列,在世界数学史上享有崇高的荣誉。 一、位置值制的最早使用 所谓位置值制,是指同一个数字由于它所在位置的不同而有不同的值。例如,365中,数字3表示三百,6表示六十。
用这种方法表示数,不但简明,而且便于计算。采用十进位置值制记数法,以我国为最早。在考古发掘的殷墟甲骨文中,就曾发现13个记数单字,它们是:
用9个数字与4个位置值的符号,可以表示出大到上万的自然数,已经有了位置值制的萌芽。到了春秋战国时期,我们的祖先已普遍使用算筹来进行计算。在筹算中,完全是采用十进位置值制来记数的,既比古巴比伦的六十进位置值制方便,也比古希腊、罗马的十进非位置值先进。这种先进的记数制度,是人类文明的重要里程碑之一,是世界数学史上无与伦比的光辉成就。
二、分数的最早使用 西汉时期,张苍、耿寿昌等学者整理、删补自秦代以来的数学知识,编成了《九章算术》。在这本数学经典的《方田》章中,提出了完整的分数运算法则。 从后来刘徽所作的《九章算术注》可以知道,在《九章算术》中,讲到约分、合分(分数加法)、减分(分数减法)、乘分(分数乘法)、约分(分数除法)的法则,与我们现在的分数运算法则完全相同。另外,还记载了课分(比较分数大小)、平分(求分数的平均值)等关于分数的知识,是世界上最早的系统叙述分数的着作。 分数运算,大约在15世纪才在欧洲流行。欧洲人普遍认为,这种算法起源于印度。实际上,印度在七世纪婆罗门笈多的着作中才开始有分数运算法则,这些法则都与《九章算术》中介绍的法则相同。而刘徽的《九章算术注》成书于魏景元四年(263年),所以,即使与刘徽的时代相比,我们也要比印度早400年左右。 三、小数的最早使用 刘徽在《九章算术注》中介绍,开方不尽时用十进分数(徽数,即小数)去逼近,首先提出了关于十进小数的概念。宋元时期,秦九韶、李冶都将1863.2寸表示为,与现在的记法基本相同。到公元 1300年前后,元代刘瑾所着《律吕成书》中,已将106368.6312写成
把小数部分降低一行写在整数部分的后边。而西方的斯台汶直到1585年才有十进小数的概念,且他的表示方法远不如中国先进,如上述的小数,他记成或106368。所以,我们完全可以自豪地宣称:中国是世界上最先使用小数的国家。 四、负数的最早使用 在《九章算术》中,已经引入了负数的概念和正负数加减法则。刘徽说:“两算得失相反,要令正负以名之”,这是关于正负数的明确定义,书中给出的正负数加减法则,和现在教科书中介绍的法则完全一样。 这些内容出现在书上的《方程章》中,是为解方程(组)服务的,如该章的第八题是: 今有卖牛二、羊五,以买十三豕,有余钱一千;卖牛三、豕三,以买九羊,钱适足;卖羊六、豕八,以买五牛,钱不足六百。问牛、羊、豕价各几何? 其解法为: 术曰:如方程,置牛二、羊五正,豕十三负,余钱数正:次置牛三正,羊九负,豕三正;次置牛五负,羊六正,豕八正,不足钱负。以正负术人之。 这里所说的意思就是:若每头牛、羊、豕的价格分别用x、y、z表示,则可列出如下的方程(组):
然后利用正负数去计算结果。在方程的各项系数及常数项中都出现了负数,在世界上率先把负数运用于计算之中。 在国外,有很长时期认为负数是一种“荒谬的数”,被摒弃于数的大家庭之外。直到公元7世纪,印度的婆罗门笈多才开始认识负数,欧洲第一个给予正负数以正确解释的是斐波那契,但他们已分别比我们的祖先晚七百多年和一千年左右。
五、二项式系数的规律的最早发现 在学习了多项式乘法以后,不难知道:
等等。那么,上述等式右端各项的系数有什么规律呢?
1261年,我国宋代数学有杨辉曾在他所着的《详解九章算法》中给出一个“开方作法本源”图(见下图),把指数分别
为0—6的二项式系数—一列出,并且指明,“开方作法本源出《释锁算书》,贾宪用此术。”贾宪是北宋时期的数学家,生平不详,大约生活在11世纪上半叶,这就是说,我国早在11世纪就已经认识了二项式各项系数的规律。现在,我们把这个规律简称为“贾宪三角形”。 在国外,直到15世纪,阿拉伯的数学家阿尔·卡西才用直角三角形表示了同样意义的三角形。 1527年,德国人阿皮亚纳斯在其所着的一本算术书的封面上也曾印有这个二项式系数表。16、17世纪,欧洲还有许多数学家也都提出过类似贾宪的三角形,其中以帕斯卡最为有名,欧洲人把这种二项式系数表称为“帕斯卡三角形”,但那已经是1654年的事了,时间要比贾宪晚600多年,就是与杨辉相比,也要落后近400年。 当然,在世界数学发展史上,中国数学的“世界之最”远远不止上面介绍的五个方面。但由此可以看到,我们的祖国是一个历史悠久的文明古国,我们中华民族是一个对世界文明的发展作出过许多贡献的伟大民族,我们的祖先在数学方面所取得的辉煌业绩,必将彪炳千古,为世界各国人民所赞颂。
我们伟大的祖国,作为世界四大文明古国之一,在数学发展的历史长河中,曾经作出许多杰出的贡献。这些光辉的成就,远远走在世界的前列,在世界数学史上享有崇高的荣誉。 一、位置值制的最早使用 所谓位置值制,是指同一个数字由于它所在位置的不同而有不同的值。例如,365中,数字3表示三百,6表示六十。
用这种方法表示数,不但简明,而且便于计算。采用十进位置值制记数法,以我国为最早。在考古发掘的殷墟甲骨文中,就曾发现13个记数单字,它们是:
用9个数字与4个位置值的符号,可以表示出大到上万的自然数,已经有了位置值制的萌芽。到了春秋战国时期,我们的祖先已普遍使用算筹来进行计算。在筹算中,完全是采用十进位置值制来记数的,既比古巴比伦的六十进位置值制方便,也比古希腊、罗马的十进非位置值先进。这种先进的记数制度,是人类文明的重要里程碑之一,是世界数学史上无与伦比的光辉成就。
二、分数的最早使用 西汉时期,张苍、耿寿昌等学者整理、删补自秦代以来的数学知识,编成了《九章算术》。在这本数学经典的《方田》章中,提出了完整的分数运算法则。 从后来刘徽所作的《九章算术注》可以知道,在《九章算术》中,讲到约分、合分(分数加法)、减分(分数减法)、乘分(分数乘法)、约分(分数除法)的法则,与我们现在的分数运算法则完全相同。另外,还记载了课分(比较分数大小)、平分(求分数的平均值)等关于分数的知识,是世界上最早的系统叙述分数的着作。 分数运算,大约在15世纪才在欧洲流行。欧洲人普遍认为,这种算法起源于印度。实际上,印度在七世纪婆罗门笈多的着作中才开始有分数运算法则,这些法则都与《九章算术》中介绍的法则相同。而刘徽的《九章算术注》成书于魏景元四年(263年),所以,即使与刘徽的时代相比,我们也要比印度早400年左右。 三、小数的最早使用 刘徽在《九章算术注》中介绍,开方不尽时用十进分数(徽数,即小数)去逼近,首先提出了关于十进小数的概念。宋元时期,秦九韶、李冶都将1863.2寸表示为,与现在的记法基本相同。到公元 1300年前后,元代刘瑾所着《律吕成书》中,已将106368.6312写成
把小数部分降低一行写在整数部分的后边。而西方的斯台汶直到1585年才有十进小数的概念,且他的表示方法远不如中国先进,如上述的小数,他记成或106368。所以,我们完全可以自豪地宣称:中国是世界上最先使用小数的国家。 四、负数的最早使用 在《九章算术》中,已经引入了负数的概念和正负数加减法则。刘徽说:“两算得失相反,要令正负以名之”,这是关于正负数的明确定义,书中给出的正负数加减法则,和现在教科书中介绍的法则完全一样。 这些内容出现在书上的《方程章》中,是为解方程(组)服务的,如该章的第八题是: 今有卖牛二、羊五,以买十三豕,有余钱一千;卖牛三、豕三,以买九羊,钱适足;卖羊六、豕八,以买五牛,钱不足六百。问牛、羊、豕价各几何? 其解法为: 术曰:如方程,置牛二、羊五正,豕十三负,余钱数正:次置牛三正,羊九负,豕三正;次置牛五负,羊六正,豕八正,不足钱负。以正负术人之。 这里所说的意思就是:若每头牛、羊、豕的价格分别用x、y、z表示,则可列出如下的方程(组):
然后利用正负数去计算结果。在方程的各项系数及常数项中都出现了负数,在世界上率先把负数运用于计算之中。 在国外,有很长时期认为负数是一种“荒谬的数”,被摒弃于数的大家庭之外。直到公元7世纪,印度的婆罗门笈多才开始认识负数,欧洲第一个给予正负数以正确解释的是斐波那契,但他们已分别比我们的祖先晚七百多年和一千年左右。
五、二项式系数的规律的最早发现 在学习了多项式乘法以后,不难知道:
等等。那么,上述等式右端各项的系数有什么规律呢?
1261年,我国宋代数学有杨辉曾在他所着的《详解九章算法》中给出一个“开方作法本源”图(见下图),把指数分别
为0—6的二项式系数—一列出,并且指明,“开方作法本源出《释锁算书》,贾宪用此术。”贾宪是北宋时期的数学家,生平不详,大约生活在11世纪上半叶,这就是说,我国早在11世纪就已经认识了二项式各项系数的规律。现在,我们把这个规律简称为“贾宪三角形”。 在国外,直到15世纪,阿拉伯的数学家阿尔·卡西才用直角三角形表示了同样意义的三角形。 1527年,德国人阿皮亚纳斯在其所着的一本算术书的封面上也曾印有这个二项式系数表。16、17世纪,欧洲还有许多数学家也都提出过类似贾宪的三角形,其中以帕斯卡最为有名,欧洲人把这种二项式系数表称为“帕斯卡三角形”,但那已经是1654年的事了,时间要比贾宪晚600多年,就是与杨辉相比,也要落后近400年。 当然,在世界数学发展史上,中国数学的“世界之最”远远不止上面介绍的五个方面。但由此可以看到,我们的祖国是一个历史悠久的文明古国,我们中华民族是一个对世界文明的发展作出过许多贡献的伟大民族,我们的祖先在数学方面所取得的辉煌业绩,必将彪炳千古,为世界各国人民所赞颂。