导航:首页 > 数字科学 > 数学里angle是什么意思

数学里angle是什么意思

发布时间:2023-02-28 16:32:25

① 数学中AAS是什么意思 数学中AAS的意思

1、AAS,即“角角边”判定定理,一种非常实用的三角形全等证明方法。

2、人教版八年级上册数学教材(2013年6月修订)中的解释为:“两角分别相等且其中一组等角的对边相等的两个三角形全等。”

3、判定定理:角角边判定定理,简写为“AAS”或“角角边”。此外,全等三角形判定定理还有边边边”(SSS) “边角边(SAS) 角边角(ASA)等,直角三角形还常用到”斜边直角边“(HL或称RHS)。其中A是英文角(angle)的缩写,S是英文边(side)的缩写,H是斜边(hypotenuse)的缩写,L是直角边(leg)的缩写。

② 二年级的数学直角和锐角钝角有什么区别

一、角度大小不同:

小于90°的角是锐角。

等于90°的角是直角。

大于90°小于180°的角是钝角。

二、三角形中的个数不同:

一个三角形只能有一个钝角或直角,可以有2到三个锐角。

(2)数学里angle是什么意思扩展阅读:

锐角(acute angle):大于0°,小于90°的角叫做锐角。

直角(right angle):等于90°的角叫做直角。

钝角(obtuse angle):大于90°而小于180°的角叫做钝角。

平角(straight angle):等于180°的角叫做平角。

优角(major angle):大于180°小于360°叫优角。

劣角(minor angle):大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

周角(round angle):等于360°的角叫做周角。

负角(negative angle):按照顺时针方向旋转而成的角叫做负角。

正角(positive angle):逆时针旋转的角为正角。

零角(zero angle):等于0°的角。

③ 数学里平角的定义是什么谢谢!

一条射线绕它的端点旋转,当始边和终边在同一条直线上,方向相反时,所构成的角叫平角。

1平角=180°+360°k(k∈Z)。平角不是一条直线,而是在一条直线上的两条射线。应该这样理解:任何“角”都是由两条有公共顶点的射线形成的,平角也不例外。只不过形成平角的两条射线在一条直线上而已。确切地说,平角是由处在同一直线上方向相反的两条射线构成的角。

平角与直线的区别与联系

一、区别

1、平角是个角,它符合角的定义;而直线是条“线”。

2、平角可度量,1平角=180度;直线不可度量。

3、最明显的区别是:平角有一个顶点和两条边,而直线则没有。

二、联系

由于平角的两条边与顶点都在同一条直线上,从“形”上看“特直线”,因此为了研究问题的方便,我们有时要把平角看成直线。在直线取一点,这个点就把直线分成了具有一个公共端点的两条射线,这时我们就可把直线看成一个平角。一句话:为了研究的需要,直线与平角可以互相转化。

④ 数学专用词汇英文表示 例如:角度 angle

A
abelian group:阿贝尔群; absolute geometry:绝对几何; absolute value:绝对值; abstract algebra:抽象代数; addition:加法; algebra:代数; algebraic closure:代数闭包; algebraic geometry:代数几何; algebraic geometry and analytic geometry:代数几何和解析几何; algebraic numbers:代数数; algorithm:算法; almost all:绝大多数; analytic function:解析函数; analytic geometry:解析几何; and:且; angle:角度; anticommutative:反交换律; antisymmetric relation:反对称关系; antisymmetry:反对称性; approximately equal:约等于; Archimedean field:阿基米德域; Archimedean group:阿基米德群; area:面积; arithmetic:算术; associative algebra:结合代数; associativity:结合律; axiom:公理; axiom of constructibility:可构造公理; axiom of empty set:空集公理; axiom of extensionality:外延公理; axiom of foundation:正则公理; axiom of pairing:对集公理; axiom of regularity:正则公理; axiom of replacement:代换公理; axiom of union:并集公理; axiom schema of separation:分离公理; axiom schema of specification:分离公理; axiomatic set theory:公理集合论; axiomatic system:公理系统;
B
Baire space:贝利空间; basis:基; Bézout's identity:贝祖恒等式; Bernoulli's inequality:伯努利不等式 ; Big O notation:大O符号; bilinear operator:双线性算子; binary operation:二元运算; binary predicate:二元谓词; binary relation:二元关系; Boolean algebra:布尔代数; Boolean logic:布尔逻辑; Boolean ring:布尔环; boundary:边界; boundary point:边界点; bounded lattice:有界格;
C
calculus:微积分学; Cantor's diagonal argument:康托尔对角线方法; cardinal number:基数; cardinality:势; cardinality of the continuum:连续统的势; Cartesian coordinate system:直角坐标系; Cartesian proct:笛卡尔积; category:范畴; Cauchy sequence:柯西序列; Cauchy-Schwarz inequality:柯西不等式; Ceva's Theorem:塞瓦定理; characteristic:特征; characteristic polynomial:特征多项式; circle:圆; class:类; closed:闭集; closure:封闭性 或 闭包; closure algebra:闭包代数; combinatorial identities:组合恒等式; commutative group:交换群; commutative ring:交换环; commutativity::交换律; compact:紧致的; compact set:紧致集合; compact space:紧致空间; complement:补集 或 补运算; complete lattice:完备格; complete metric space:完备的度量空间; complete space:完备空间; complex manifold:复流形; complex plane:复平面; congruence:同余; congruent:全等; connected space:连通空间; constructible universe:可构造全集; constructions of the real numbers:实数的构造; continued fraction:连分数; continuous:连续; continuum hypothesis:连续统假设; contractible space:可缩空间; convergence space:收敛空间; cosine:余弦; countable:可数; countable set:可数集; cross proct:叉积; cycle space:圈空间; cyclic group:循环群;
D
de Morgan's laws:德·摩根律; Dedekind completion:戴德金完备性; Dedekind cut:戴德金分割; del:微分算子; dense:稠密; densely ordered:稠密排列; derivative:导数; determinant:行列式; diffeomorphism:可微同构; difference:差; differentiable manifold:可微流形; differential calculus:微分学; dimension:维数; directed graph:有向图; discrete space:离散空间; discriminant:判别式; distance:距离; distributivity:分配律; dividend:被除数; dividing:除; divisibility:整除; division:除法; divisor:除数; dot proct:点积;
E
eigenvalue:特征值; eigenvector:特征向量; element:元素; elementary algebra:初等代数; empty function:空函数; empty set:空集; empty proct:空积; equal:等于; equality:等式 或 等于; equation:方程; equivalence relation:等价关系; Euclidean geometry:欧几里德几何; Euclidean metric:欧几里德度量; Euclidean space:欧几里德空间; Euler's identity:欧拉恒等式; even number:偶数; event:事件; existential quantifier:存在量词; exponential function:指数函数; exponential identities:指数恒等式; expression:表达式; extended real number line:扩展的实数轴;
F
false:假; field:域; finite:有限; finite field:有限域; finite set:有限集合; first-countable space:第一可数空间; first order logic:一阶逻辑; foundations of mathematics:数学基础; function:函数; functional analysis:泛函分析; functional predicate:函数谓词; fundamental theorem of algebra:代数基本定理; fraction:分数;
G
gauge space:规格空间; general linear group:一般线性群; geometry:几何学; gradient:梯度; graph:图; graph of a relation:关系图; graph theory:图论; greatest element:最大元; group:群; group homomorphism:群同态;
H
Hausdorff space:豪斯多夫空间; hereditarily finite set:遗传有限集合; Heron's formula:海伦公式; Hilbert space:希尔伯特空间; Hilbert's axioms:希尔伯特公理系统; Hodge decomposition:霍奇分解; Hodge Laplacian:霍奇拉普拉斯算子; homeomorphism:同胚; horizontal:水平; hyperbolic function identities:双曲线函数恒等式; hypergeometric function identities:超几何函数恒等式; hyperreal number:超实数;
I
identical:同一的; identity:恒等式; identity element:单位元; identity matrix:单位矩阵; idempotent:幂等; if:若; if and only if:当且仅当; iff:当且仅当; imaginary number:虚数; inclusion:包含; index set:索引集合; indiscrete space:非离散空间; inequality:不等式 或 不等; inequality of arithmetic and geometric means:平均数不等式; infimum:下确界; infinite series:无穷级数; infinite:无穷大; infinitesimal:无穷小; infinity:无穷大; initial object:初始对象; inner angle:内角; inner proct:内积; inner proct space:内积空间; integer:整数; integer sequence:整数列; integral:积分; integral domain:整数环; interior:内部; interior algebra:内部代数; interior point:内点; intersection:交集; inverse element:逆元; invertible matrix:可逆矩阵; interval:区间; involution:回旋; irrational number:无理数; isolated point:孤点; isomorphism:同构;
J
Jacobi identity:雅可比恒等式; join:并运算;
K
格式: Kuratowski closure axioms:Kuratowski 闭包公理;
L
least element:最小元; Lebesgue measure:勒贝格测度; Leibniz's law:莱布尼茨律; Lie algebra:李代数; Lie group:李群; limit:极限; limit point:极限点; line:线; line segment:线段; linear:线性; linear algebra:线性代数; linear operator:线性算子; linear space:线性空间; linear transformation:线性变换; linearity:线性性; list of inequalities:不等式列表; list of linear algebra topics:线性代数相关条目; locally compact space:局部紧致空间; logarithmic identities:对数恒等式; logic:逻辑学; logical positivism:逻辑实证主义; law of cosines:余弦定理; L??wenheim-Skolem theorem:L??wenheim-Skolem 定理; lower limit topology:下限拓扑;
M
magnitude:量; manifold:流形; map:映射; mathematical symbols:数学符号; mathematical analysis:数学分析; mathematical proof:数学证明; mathematics:数学; matrix:矩阵; matrix multiplication:矩阵乘法; meaning:语义; measure:测度; meet:交运算; member:元素; metamathematics:元数学; metric:度量; metric space:度量空间; model:模型; model theory:模型论; molar arithmetic:模运算; mole:模; monotonic function:单调函数; multilinear algebra:多重线性代数; multiplication:乘法; multiset:多样集;
N
naive set theory:朴素集合论; natural logarithm:自然对数; natural number:自然数; natural science:自然科学; negative number:负数; neighbourhood:邻域; New Foundations:新基础理论; nine point circle:九点圆; non-Euclidean geometry:非欧几里德几何; nonlinearity:非线性; non-singular matrix:非奇异矩阵; nonstandard model:非标准模型; nonstandard analysis:非标准分析; norm:范数; normed vector space:赋范向量空间; n-tuple:n 元组 或 多元组; nullary:空; nullary intersection:空交集; number:数; number line:数轴;
O
object:对象; octonion:八元数; one-to-one correspondence:一一对应; open:开集; open ball:开球; operation:运算; operator:算子; or:或; order topology:序拓扑; ordered field:有序域; ordered pair:有序对; ordered set:偏序集; ordinal number:序数; ordinary mathematics:一般数学; origin:原点; orthogonal matrix:正交矩阵;
P
p-adic number:p进数; paracompact space:仿紧致空间; parallel postulate:平行公理; parallelepiped:平行六面体; parallelogram:平行四边形; partial order:偏序关系; partition:分割; Peano arithmetic:皮亚诺公理; Pedoe's inequality:佩多不等式; perpendicular:垂直; philosopher:哲学家; philosophy:哲学; philosophy journals:哲学类杂志; plane:平面; plural quantification:复数量化; point:点; Point-Line-Plane postulate:点线面假设; polar coordinates:极坐标系; polynomial:多项式; polynomial sequence:多项式列; positive-definite matrix:正定矩阵; positive-semidefinite matrix:半正定矩阵; power set:幂集; predicate:谓词; predicate logic:谓词逻辑; preorder:预序关系; prime number:素数; proct:积; proof:证明; proper class:纯类; proper subset:真子集; property:性质; proposition:命题; pseudovector:伪向量; Pythagorean theorem:勾股定理;
Q
Q.E.D.:Q.E.D.; quaternion:四元数; quaternions and spatial rotation:四元数与空间旋转; question:疑问句; quotient field:商域; quotient set:商集;
R
radius:半径; ratio:比; rational number:有理数; real analysis:实分析; real closed field:实闭域; real line:实数轴; real number:实数; real number line:实数线; reflexive relation:自反关系; reflexivity:自反性; reification:具体化; relation:关系; relative complement:相对补集; relatively complemented lattice:相对补格; right angle:直角; right-handed rule:右手定则; ring:环;
S
scalar:标量; second-countable space:第二可数空间; self-adjoint operator:自伴随算子; sentence:判断; separable space:可分空间; sequence:数列 或 序列; sequence space:序列空间; series:级数; sesquilinear function:半双线性函数; set:集合; set-theoretic definition of natural numbers:自然数的集合论定义; set theory:集合论; several complex variables:一些复变量; shape:几何形状; sign function:符号函数; singleton:单元素集合; social science:社会科学; solid geometry:立体几何; space:空间; spherical coordinates:球坐标系; square matrix:方块矩阵; square root:平方根; strict:严格; structural recursion:结构递归; subset:子集; subsequence:子序列; subspace:子空间; subspace topology:子空间拓扑; subtraction:减法; sum:和; summation:求和; supremum:上确界; surreal number:超实数; symmetric difference:对称差; symmetric relation:对称关系; system of linear equations:线性方程组;
T
tensor:张量; terminal object:终结对象; the algebra of sets:集合代数; theorem:定理; top element:最大元; topological field:拓扑域; topological manifold:拓扑流形; topological space:拓扑空间; topology:拓扑 或 拓扑学; total order:全序关系; totally disconnected:完全不连贯; totally ordered set:全序集; transcendental number:超越数; transfinite recursion:超限归纳法; transitivity:传递性; transitive relation:传递关系; transpose:转置; triangle inequality:三角不等式; trigonometric identities:三角恒等式; triple proct:三重积; trivial topology:密着拓扑; true:真; truth value:真值;
U
unary operation:一元运算; uncountable:不可数; uniform space:一致空间; union:并集; unique:唯一; unit interval:单位区间; unit step function:单位阶跃函数; unit vector:单位向量; universal quantification:全称量词; universal set:全集; upper bound:上界;
V
vacuously true:??; Vandermonde's identity:Vandermonde 恒等式; variable:变量; vector:向量; vector calculus:向量分析; vector space:向量空间; Venn diagram:文氏图; volume:体积; von Neumann ordinal:冯·诺伊曼序数; von Neumann universe:冯·诺伊曼全集; vulgar fraction:分数;
Z
Zermelo set theory:策梅罗集合论; Zermelo-Fraenkel set theory:策梅罗-弗兰克尔集合论; ZF set theory:ZF 系统; zero:零; zero object:零对象;
绝对很全了~

⑤ 在数学中基本角是什么

锐角、直角、钝角这就是三个最基本的角。

在几何学中,角是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的边,它们的公共端点叫做角的顶点。一般的角会假设在欧几里得平面上,但在欧几里得几何中也可以定义角。角在几何学和三角学中有着广泛的应用。

(5)数学里angle是什么意思扩展阅读:

角的种类:

锐角(acute angle):大于0°,小于90°的角叫做锐角。

直角(right angle):等于90°的角叫做直角。

钝角(obtuse angle):大于90°而小于180°的角叫做钝角。

平角(straight angle):等于180°的角叫做平角。

优角(major angle):大于180°小于360°叫优角。

劣角(minor angle):大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

周角(round angle):等于360°的角叫做周角。

负角(negative angle):按照顺时针方向旋转而成的角叫做负角。

阅读全文

与数学里angle是什么意思相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:736
乙酸乙酯化学式怎么算 浏览:1399
沈阳初中的数学是什么版本的 浏览:1345
华为手机家人共享如何查看地理位置 浏览:1037
一氧化碳还原氧化铝化学方程式怎么配平 浏览:880
数学c什么意思是什么意思是什么 浏览:1403
中考初中地理如何补 浏览:1293
360浏览器历史在哪里下载迅雷下载 浏览:696
数学奥数卡怎么办 浏览:1383
如何回答地理是什么 浏览:1018
win7如何删除电脑文件浏览历史 浏览:1050
大学物理实验干什么用的到 浏览:1479
二年级上册数学框框怎么填 浏览:1695
西安瑞禧生物科技有限公司怎么样 浏览:958
武大的分析化学怎么样 浏览:1243
ige电化学发光偏高怎么办 浏览:1332
学而思初中英语和语文怎么样 浏览:1646
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1481
数学中的棱的意思是什么 浏览:1053