㈠ 数学运算符号有哪些,为什么很多人只说“加减乘除”符号,其他符号不提
运算符号有:
加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。
人们提到数学大多只说加减乘除,不提对数微分等等是因为:加减乘除是最基本的四则运算,也是最广泛运用的符号(基本从幼儿,小学开始就已经开始运用了,而其他运算符号最早要从初中开始学习。)。
㈡ 数学中常见的数字符号有哪些
常见的数字符号如下:
⓪ ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
⑴ ⑵ ⑶ ⑷ ⑸ ⑹ ⑺ ⑻ ⑼ ⑽
一 二 三 四 五 六 七 八 九 十
(一)(二)(三)(四)(五)(六)(七)(八)(九)(十)
⒈ ⒉ ⒊ ⒋ ⒌ ⒍ ⒎ ⒏ ⒐ ⒑
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ
❶❷❸❹❺❻❼❽❾❿
数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。 数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。
在木头、骨头或石头上的计数符号从史前时代就开始被使用了。石器时代的文化,包括古代印第安人,使用计数符号进行赌博、私人服务和交易。
符号是约定俗成的社会交际工具,其代表是语言。正常情况下传授双方是在约定的前提下使用某种符号,这一约定是自觉的或不自觉的。受众的选择性注意、理解和接受应该在约定的前提下使用。
从符号学的意义上说,人类的交际行为是指人们运用符号传情达意,进行人际间的讯息交流和讯息共享的行为协调过程。
㈢ 初中数学所有符号。意思是什么。如+是什么意思。
+在初中除了加,还有正数的意思,比如1,就读作正一,+1
-除了减也还有负数的意思,-1,读作负一
√ ̄,根号,用来开平方的符号。例如根号9,开平方开出来就等于3,3×3等于9,9是3的平方
还有做证明题要用的∵ :因为 ∴所以
嗯,还有:
∞ 无穷大
PI 圆周率
|x| 函数的绝对值
∪ 集合并
∩ 集合交
≥ 大于等于
≤ 小于等于
≡ 恒等于或同余
ln(x) 自然对数
lg(x) 以2为底的对数
log(x) 常用对数
floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
{x} 小数部分 x - floor(x)
∫f(x)δx 不定积分
∫[a:b]f(x)δx a到b的定积分
[P] P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求极限
f(z) f关于z的m阶导函数
C(n:m) 组合数,n中取m
P(n:m) 排列数
m|n m整除n
m⊥n m与n互质
a ∈ A a属于集合A
#A 集合A中的元素个数
这些是以后要用到的
㈣ 数学中的运算符号有哪些
1、运算符号:
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。
2、数学符号大全及意义之结合符号:
如小括号“()”,中括号“[]”,大括号“{}”,横线“—”=。
如正号“ ”,负号“-”,正负号“ ”(以及与之对应使用的负正号“”)
3、数学符号大全及意义之省略符号:
如三角形(△),直角三角形(Rt△),正弦(sin)(见三角函数)
双曲正弦函数(sinh),x的函数(f(x)),极限(lim),角(∠)
(4)初中数学题计算都有什么符号扩展阅读:
+ 加号 求两个数的和
- 减号 求两个数的差
× 乘号 求两个数的积
÷ 除号 求两个数的商
^ 乘方 求一个数的几次幂
√ 开方 求一个数的几次方根
d 微分 求一个函数的导数(微分)
∫ 积分 求一个函数的原函数(不定积分)
㈤ 初中数学,学过哪些数学符号呢
加号,减号,乘号,除号,等于号,约等于号,>,<,≥,≤,%,分数线,根号,相似号,≌(全等),∵(因为),∴(所以)。
“⊇”是包含符号,“|”表示“能整除”(例如a|b 表示“a能整除b”,而||b表示r是a恰能整除b的最大幂次),x,y等任何字母都可以代表未知数。
关系符号:
如“=”是等号,“≈”是近似符号(即约等于),“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”,即不小于),“≤”是小于或等于符号(也可写作“≯”,即不大于)。
“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是正比例符号(表示反比例时可以利用倒数关系),“∈”是属于符号,“⊆”是包含于符号。