1. 数学建模全国获奖的论文大多都采用的是什么算法是不是某些算法获奖的概率比较高
算法的设计的好坏将直接影响运算速度的快慢,建议多用数学软件(
Mathematice,Matlab,Maple, Mathcad,Lindo,Lingo,SAS 等),这里提供十种数学
建模常用算法,仅供参考:
1、 蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决
问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必
用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数
据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab 作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多
数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通
常使用Lindo、Lingo 软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算
法,涉及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算
法设计中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些
问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,
但是算法的实现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很
多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种
暴力方案,最好使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计
算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替
积分等思想是非常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分
析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编
写库函数进行调用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文
中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问
题,通常使用Matlab 进行处理)
2. 数学建模中,给出非常多的节点,求这些节点的最短路径(类似一条线的路径),应该用什么算法好
下面是我自己编写的一段代码,用来求过包含两千多个点的最短路,速度很快,比遗传、蚁群快而且最短路更短。你可以试试看,有问题再问我。
function [S,len]=short(P)
% 此程序用来求相同类型点间的最短路
% P表示某一类型的点的坐标矩阵
% p是最短路径
% d是路径权值和
%建立权值矩阵
n=length(P);%求该类型点的数量
W=zeros(n,n);
for i=1:n %计算权值并填充权值矩阵,由于各点联通,此权值矩阵就是该图的最短路矩阵
for j=(i+1):n
W(i,j)=sqrt((P(i,1)-P(j,1))^2+(P(i,2)-P(j,2))^2);
end
end
for i=2:n
for j=1:(i-1)
W(i,j)=W(j,i);
end
end
%求通过所有点的最短路
%先求从i点至j点,必须通过指定其他n-2个点的最短路,选出其中的的最短路
S=zeros(1,n);
S(1)=1; %先插入1,2点,以此为基准,每次插进一个新点
S(2)=2;
d1=2*W(1,2);
for i=3:n %新加入的点的标号
d1i=zeros(1,i); %插入第i个点,有i中可能的距离,其中最小值将为该轮的d1
for j=1:i %新加入点的位置,插入第i个点是有i个空位可供选择
if j==1 %在第一个空位插入
d1i(j)=d1+W(i,S(1))+W(i,S(i-1))-W(S(1),S(i-1)); %插入点在首端时,距离为原距离与第i点与上一次插入后的第1位置的点之间距离之和
end
if j>1 & j<i %在中间的空位插入
d1i(j)=d1+W(S(j-1),i)+W(i,S(j))-W(S(j-1),S(j));
end
if j==i
d1i(j)=d1+W(S(i-1),i)+W(S(1),i)-W(S(1),S(i-1));
end
end
[d1,I]=min(d1i);
S((I+1):i)=S(I:(i-1)); %将第I位后面的点后移一位
S(I)=i;%将第i点插入在I位置
end
len=d1;
下面这段代码是我用来把上面的结果保存到txt文件中的代码,如果你需要,可以用用。代码是我上次用过的没有改,你自己按照需要自己改吧。
clear
close all
clc
loaddata
X=[C;E;I;J];
[S,len]=short(X);
DrawPath(S,X);
print(1,'-dpng','cmeiju3.png');
% 将结果保存至txt文件
fid=fopen('cmeijulujin.txt','wt'); %创建alunjin.txt文件
fprintf(fid,'c号刀具\n');
fprintf(fid,'%d %d\n',X(S));
save('cmeijus','S');
save('cmeijulen','len');
3. 数学建模的方法有哪些
预测模块:灰色预测、时间序列预测、神经网络预测、曲线拟合(线性回归);
归类判别:欧氏距离判别、fisher判别等 ;
图论:最短路径求法 ;
最优化:列方程组 用lindo 或 lingo软件解 ;
其他方法:层次分析法 马尔可夫链 主成分析法 等 。
建模常用算法,仅供参考:
蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决 问题的算法,同时间=可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 。
数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数 据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab 作为工具) 。
线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多 数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用Lindo、Lingo 软件实现) 。
图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算 法,涉及到图论的问题可以用这些方法解决,需要认真准备) 。
动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算 法设计中比较常用的方法,很多场合可以用到竞赛中) 。
最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些 问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助, 但是算法的实现比较困难,需慎重使用) 。
网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很 多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 。
一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替 积分等思想是非常重要的) 。
数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分 析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编 写库函数进行调用) 。
图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问 题,通常使用Matlab 进行处理)。
4. 数学建模算法总结
无总结反省则无进步
写这篇文章,一是为了总结之前为了准备美赛而学的算法,而是将算法罗列并有几句话解释方便以后自己需要时来查找。
数学建模问题总共分为四类:
1. 分类问题 2. 优化问题 3. 评价问题 4. 预测问题
我所写的都是基于数学建模算法与应用这本书
一 优化问题
线性规划与非线性规划方法是最基本经典的:目标函数与约束函数的思想
现代优化算法:禁忌搜索;模拟退火;遗传算法;人工神经网络
模拟退火算法:
简介:材料统计力学的研究成果。统计力学表明材料中不同结构对应于粒子的不同能量水平。在高温条件下,粒子的能量较高,可以自由运动和重新排列。在低温条件下,粒子能量较低。如果从高温开始,非常缓慢地降温(此过程称为退火),粒子就可以在每个温度下达到热平衡。当系统完全被冷却时,最终形成处于低能状态的晶体。
思想可用于数学问题的解决 在寻找解的过程中,每一次以一种方法变换新解,再用退火过程的思想,以概率接受该状态(新解) 退火过程:概率转化,概率为自然底数的能量/KT次方
遗传算法: 遗传算法是一种基于自然选择原理和自然遗传机制的搜索算法。模拟自然界中的生命进化机制,在人工系统中实现特定目标的优化。
遗传算法的实质是通过群体搜索技术(?),根据适者生存的原则逐代进化,最终得到最优解或准最优解。
具体实现过程(P329~331)
* 编码
* 确定适应度函数(即目标函数)
* 确定进化参数:群体规模M,交叉概率Pc,变异概率Pm,进化终止条件
* 编码
* 确定初始种群,使用经典的改良圈算法
* 目标函数
* 交叉操作
* 变异操作
* 选择
改良的遗传算法
两点改进 :交叉操作变为了以“门当户对”原则配对,以混乱序列确定较差点位置 变异操作从交叉操作中分离出来
二 分类问题(以及一些多元分析方法)
* 支持向量机SVM
* 聚类分析
* 主成分分析
* 判别分析
* 典型相关分析
支持向量机SVM: 主要思想:找到一个超平面,使得它能够尽可能多地将两类数据点正确分开,同时使分开的两类数据点距离分类面最远
聚类分析(极其经典的一种算法): 对样本进行分类称为Q型聚类分析 对指标进行分类称为R型聚类分析
基础:样品相似度的度量——数量化,距离——如闵氏距离
主成分分析法: 其主要目的是希望用较少的变量去解释原来资料中的大部分变异,将掌握的许多相关性很高的变量转化成彼此相互独立或不相关的变量。通常是选出比原始变量个数少,能解释大部分资料中的变异的几个新变量,及主成分。实质是一种降维方法
判别分析: 是根据所研究的个体的观测指标来推断个体所属类型的一种统计方法。判别准则在某种意义下是最优的,如错判概率最小或错判损失最小。这一方法像是分类方法统称。 如距离判别,贝叶斯判别和FISHER判别
典型相关分析: 研究两组变量的相关关系 相对于计算全部相关系数,采用类似主成分的思想,分别找出两组变量的各自的某个线性组合,讨论线性组合之间的相关关系
三 评价与决策问题
评价方法分为两大类,区别在于确定权重上:一类是主观赋权:综合资讯评价定权;另一类为客观赋权:根据各指标相关关系或各指标值变异程度来确定权数
* 理想解法
* 模糊综合评判法
* 数据包络分析法
* 灰色关联分析法
* 主成分分析法(略)
* 秩和比综合评价法 理想解法
思想:与最优解(理想解)的距离作为评价样本的标准
模糊综合评判法 用于人事考核这类模糊性问题上。有多层次模糊综合评判法。
数据包络分析法 是评价具有多指标输入和多指标输出系统的较为有效的方法。是以相对效率为概念基础的。
灰色关联分析法 思想:计算所有待评价对象与理想对象的灰色加权关联度,与TOPSIS方法类似
主成分分析法(略)
秩和比综合评价法 样本秩的概念: 效益型指标从小到大排序的排名 成本型指标从大到小排序的排名 再计算秩和比,最后统计回归
四 预测问题
* 微分方程模型
* 灰色预测模型
* 马尔科夫预测
* 时间序列(略)
* 插值与拟合(略)
* 神经网络
微分方程模型 Lanchester战争预测模型。。
灰色预测模型 主要特点:使用的不是原始数据序列,而是生成的数据序列 优点:不需要很多数据·,能利用微分方程来充分挖掘系统的本质,精度高。能将无规律的原始数据进行生成得到规律性较强的生成序列。 缺点:只适用于中短期预测,只适合指数增长的预测
马尔科夫预测 某一系统未来时刻情况只与现在状态有关,与过去无关。
马尔科夫链
时齐性的马尔科夫链
时间序列(略)
插值与拟合(略)
神经网络(略)
5. 参加数学建模有哪些必学的算法
1. 蒙特卡洛方法:
又称计算机随机性模拟方法,也称统计实验方法。可以通过模拟来检验自己模型的正确性。
2. 数据拟合、参数估计、插值等数据处理
比赛中常遇到大量的数据需要处理,而处理的数据的关键就在于这些方法,通常使用matlab辅助,与图形结合时还可处理很多有关拟合的问题。
3. 规划类问题算法:
包括线性规划、整数规划、多元规划、二次规划等;竞赛中又很多问题都和规划有关,可以说不少的模型都可以归结为一组不等式作为约束条件,几个函数表达式作为目标函数的问题,这类问题,求解是关键。
这类问题一般用lingo软件就能求解。
4. 图论问题:
主要是考察这类问题的算法,包括:Dijkstra、Floyd、Prime、Bellman-Ford,最大流、二分匹配等。熟悉ACM的人来说,应该都不难。
5. 计算机算法设计中的问题:
算法设计包括:动态规划、回溯搜索、分治、分支定界法(求解整数解)等。
6. 最优化理论的三大非经典算法:
a) 模拟退火法(SA)
b) 神经网络(NN)
c) 遗传算法(GA)
7. 网格算法和穷举算法
8. 连续问题离散化的方法
因为计算机只能处理离散化的问题,但是实际中数据大多是连续的,因此需要将连续问题离散化之后再用计算机求解。
如:差分代替微分、求和代替积分等思想都是把连续问题离散化的常用方法。
9. 数值分析方法
主要研究各种求解数学问题的数值计算方法,特别是适用于计算机实现的方法与算法。
包括:函数的数值逼近、数值微分与数值积分、非线性返程的数值解法、数值代数、常微分方程数值解等。
主要应用matlab进行求解。
10. 图像处理算法
这部分主要是使用matlab进行图像处理。
包括展示图片,进行问题解决说明等。
6. 关于数学建模中用到的数学理论和编程算法
关于程序,我建议你用matlab或者mathmaticas,用这类专用数学软件比较好,因为我知道绝大多数人对C及C++的掌握还不至于到能够熟练写出你上述的各种算法(当然一些的简单的可以参考ACM的相关书籍),况且在实际工作中很多科学工作者或是工程师都是用Matlab之类的数学软件,所以我也建议你用。
至于你是工科的(我也是),所以我也能够理解你想学习上述各种算法等的想法,但是我觉得这个真的不太现实,我自己也很爱好数学,在平时我也经常学习各种非自己专业的数学知识,但是实际上你学习了之后也要理解,更何况你要运用它到非常熟练的程度(绝非一般考试可比),所以我认为你就必须要非常有选择的看,而且强烈建议你先做好规划(一定要符合自己实际情况,不要贪心),然后抓紧学。
我看你上面列的,其中组合数学非常难,但是你一定要非常踏实地学好(这个会应用在许多连你自己都想不到的地方),另外图论也是必须的,但这里我建议你先学习《离散数学》中的“图论”,当你以后在运用中如果遇到更高深的理论再去参考专门的图论书籍也不迟。另外微分方程我建议你先学习一些基础的知识即可,因为在建模中大多数情况下我觉得你只要会建立就行了,这块内容不用涉入太深,不然太费时间。至于你后面列的一些算法,这个没办法回避的,但也不是说你要一个个看过来,当然你可以考虑先走马观花地扫一遍,然后在仔细深入地学习集中重要的,相对出现几率大的算法。建议你多多拿题目来练习,在练题的过程中顺带学习相应知识,这样效率比较高。
其他的我也帮不了什么,关键你自己要抓紧,效率要大大提高。最后祝你好运!
7. 数学建模都有哪些方法
这些是以前在网上整理的:
要重点突破:
1 预测模块:灰色预测、时间序列预测、神经网络预测、曲线拟合(线性回归);
2 归类判别:欧氏距离判别、fisher判别等 ;
3 图论:最短路径求法 ;
4 最优化:列方程组 用lindo 或 lingo软件解 ;
5 其他方法:层次分析法 马尔可夫链 主成分析法 等 ;
6 用到软件:matlab lindo (lingo) excel ;
7 比赛前写几篇数模论文。
这是每年参赛的赛提以及获奖作品的解法,你自己估量着吧……
赛题 解法
93A非线性交调的频率设计 拟合、规划
93B足球队排名 图论、层次分析、整数规划
94A逢山开路 图论、插值、动态规划
94B锁具装箱问题 图论、组合数学
95A飞行管理问题 非线性规划、线性规划
95B天车与冶炼炉的作业调度 动态规划、排队论、图论
96A最优捕鱼策略 微分方程、优化
96B节水洗衣机 非线性规划
97A零件的参数设计 非线性规划
97B截断切割的最优排列 随机模拟、图论
98A一类投资组合问题 多目标优化、非线性规划
98B灾情巡视的最佳路线 图论、组合优化
99A自动化车床管理 随机优化、计算机模拟
99B钻井布局 0-1规划、图论
00A DNA序列分类 模式识别、Fisher判别、人工神经网络
00B钢管订购和运输 组合优化、运输问题
01A血管三维重建 曲线拟合、曲面重建
01B 工交车调度问题 多目标规划
02A车灯线光源的优化 非线性规划
02B彩票问题 单目标决策
03A SARS的传播 微分方程、差分方程
03B 露天矿生产的车辆安排 整数规划、运输问题
04A奥运会临时超市网点设计 统计分析、数据处理、优化
04B电力市场的输电阻塞管理 数据拟合、优化
05A长江水质的评价和预测 预测评价、数据处理
05B DVD在线租赁 随机规划、整数规划
算法的设计的好坏将直接影响运算速度的快慢,建议多用数学软件(
Mathematice,Matlab,Maple, Mathcad,Lindo,Lingo,SAS 等),这里提供十种数学
建模常用算法,仅供参考:
1、 蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决
问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必
用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数
据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab 作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多
数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通
常使用Lindo、Lingo 软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算
法,涉及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算
法设计中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些
问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,
但是算法的实现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很
多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种
暴力方案,最好使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计
算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替
积分等思想是非常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分
析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编
写库函数进行调用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文
中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问
题,通常使用Matlab 进行处理)