‘壹’ 数学中C一般表示什么数
C的确是复数集的符号,C有时候还可以表示周长。
‘贰’ C在数学里面是什么意思
C在数学里面表示复数集合。在数学计算等场合中经常使用,是作为对文字说明的省略的符号表达。
复数的集合用C表示,实数的集合用R表示,显然,R是C的真子集。复数集是无序集,不能建立大小顺序。将复数的实部与虚部的平方和的正的平方根的值称为该复数的模,可记作∣z∣。
通常把形如z=a+bi的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。
(2)数学值域中c代表什么扩展阅读:
表示复数集合的字母:
数学中N:非负整数集合或自然数集合{0,1,2,3,…}
N*或N+:正整数集合{1,2,3,…}
Z:整数集合{…,-1,0,1,…}
Q:有理数集合
Q+:正有理数集合
Q-:负有理数集合
R:实数集合(包括有理数和无理数)
R+:正实数集合
R-:负实数集合
C:复数集合
‘叁’ 数学中的C代表什么意思
在这个知识点中,我们一般用的C代表组合,是几个数组合在一起有几种方法,不论数的顺序。比如C(3,2),表示从3个物体中选出2个,总共的方法是3种,分别是甲乙、甲丙、乙丙(3个物体是不相同的情况下)。
而A则代表排列,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列。比如n个不同的物体,要取出m个(m<=n)进行排列,方法就是A(n,m)种。也可以这样想,排列放第一个有n种选择,,第二个有n-1种选择,,第三个有n-2种选择,·····,第m个有n+1-m种选择,所以总共的排列方法是n(n-1)(n-2)···(n+1-m),也等于A(n,m)。
两者计算方法分别如下:
C:计算时不需要考虑顺序。
A:计算时需要考虑顺序。排列可分选排列与全排列两种,在从n个不同元素取出m个不同元素的排列种,当m<n时,这个排抄列称为选排列;当m=n时,这个排列称为全排列。n个元素的全排列的个数记为Pn。
‘肆’ 在数学中c表示什么意思
c代表周长 ,s代表面积
‘伍’ 数学中c是什么意思
数学中c是复数集合(complex number)
词汇解析:
complex
英 ['kɒmpleks] 美 [kəm'pleks]
adj. 复杂的;合成的;复合的
n. 综合体;复合体;[医]综合症状;[心]情结
It was a complex problem.
这是一个复杂的问题。
complex idea 复杂的观念
complex machines 结构复杂的机器
(5)数学值域中c代表什么扩展阅读
复数的图象表示法——
德国数学家阿甘得(1777—1855)在1806年公布了复数的图象表示法,即所有实数能用一条数轴表示,同样,复数也能用一个平面上的点来表示。在直角坐标系中,横轴上取对应实数a的点A,纵轴上取对应实数b的点B,并过这两点引平行于坐标轴的直线,它们的交点C就表示复数 。
象这样,由各点都对应复数的平面叫做“复平面”,后来又称“阿甘得平面”。高斯在1831年,用实数组 代表复数 ,并建立了复数的某些运算,使得复数的某些运算也象实数一样地“代数化”。他又在1832年第一次提出了“复数”这个名词,还将表示平面上同一点的两种不同方法——直角坐标法和极坐标法加以综合。
‘陆’ 数学中c代表什么
C代表复数集合
N代表自然数集合(包括0),Z代表整数集合,Q代表有理数集合,R代表实数集合,
C还表示周长
S为面积
‘柒’ c表示什么 数学公式是什么
c在数学中表示周长的意思。周长是指环绕有限面积的区域边缘的长度积分,叫做周长,也就是图形一周的长度。多边形的周长的长度也相等于图形所有边的和,圆的周长=πd=2πr(d为直径,r为半径,π)。
在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数条对称轴。在同一平面内,到定点的距离等于定长的点的集合叫做圆。
圆可以表示为集合{M||MO|=r},其中O是圆心,r是半径。圆的标准方程是(x-a)+(y-b)=r,其中点(a,b)是圆心,r是半径。
c的数学含义
在小学数学里表示圆的周长,还有高中数学中的C是复数集、常数。C然后上标一个数下标一个数是组合数,CuA是全集U中的子集A的补集。这里的希腊字母π,和通常一样代表圆周长和直径的比值,即为圆周率。
现代数学家可以用微积分或更高深的后继理论实分析得到这个面积。但是在古希腊伟大的数学家阿基米德在《圆的测量》中使用欧几里得几何证明了一个圆周内部的面积等于一个以其圆周长及半径作为两个直角边的直角三角形面积。
‘捌’ 数学中c代表什么
数学中c表示复数集合。在数学计算等场合中经常使用,是作为对文字说明的省略的符号表达。
集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象。集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。
(8)数学值域中c代表什么扩展阅读:
一、其他字母集合
1、N*或N+:正整数集合{1,2,3,…}
2、Z:整数集合{…,-1,0,1,…}
3、Q:有理数集合
4、Q+:正有理数集合
5、Q-:负有理数集合
6、R:实数集合(包括有理数和无理数)
7、R+:正实数集合
8、R-:负实数集合
二、运算定律
交换律:A∩B=B∩A;A∪B=B∪A
结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C
分配对偶律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)
对偶律:(A∪B)^C=A^C∩B^C;(A∩B)^C=A^C∪B^C
同一律:A∪∅=A;A∩U=A
‘玖’ 数学里c是什么意思
C表示的是组合意思。
组合(combination)是一个数学名词。从n个不同的元素中,任取m(m≤n)个元素为一组,叫作从n个不同元素中取出m个元素的一个组合。
(9)数学值域中c代表什么扩展阅读:
重复组合(combination
with
repetiton)是一种特殊的组合。从n个不同元素中可重复地选取m个元素。不管其顺序合成一组,称为从n个元素中取m个元素的可重复组合。当且仅当所取的元素相同,且同一元素所取的次数相同,则两个重复组合相同。
排列组合计算方法如下:
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m)
=n!/m!(n-m)!;
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
参考资料来源:搜狗网络-组合