导航:首页 > 数字科学 > 数学建模理工做什么题

数学建模理工做什么题

发布时间:2023-03-02 13:05:50

‘壹’ 大学生数学建模竞赛考什么啊

如下:

竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过高等学校的数学课程。题目有较大的灵活性供参赛者发挥其创造能力。

参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。

中国大学生数学建模竞赛相关意义:

1、培养创新意识和创造能力。

2、训练快速获取信息和资料的能力。

3、锻炼快速了解和掌握新知识的技能。

4、培养团队合作意识和团队合作精神。

5、增强写作技能和排版技术。

6、荣获国家级奖励有利于保送研究生

7、荣获国际级奖励有利于申请出国留学。

8、更重要的是训练人的逻辑思维和开放性思考方式。

‘贰’ 数学建模的建模题目

1992年
(A) 施肥效果分析问题(北京理工大学:叶其孝)
(B) 实验数据分解问题(华东理工大学:俞文此; 复旦大学:谭永基)
1993年
(A) 非线性交调的频率设计问题(北京大学:谢衷洁)
(B) 足球排名次问题(清华大学:蔡大用)
1994年
(A) 逢山开路问题(西安电子科技大学:何大可)
(B) 锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此)
1995年
(A) 飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此)
(B) 天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾)
1996年
(A) 最优捕鱼策略问题(北京师范大学:刘来福)
(B) 节水洗衣机问题(重庆大学:付鹂)
1997年
(A) 零件参数设计问题(清华大学:姜启源)
(B) 截断切割问题(复旦大学:谭永基,华东理工大学:俞文此)
1998年
(A) 投资的收益和风险问题(浙江大学:陈淑平)
(B) 灾情巡视路线问题(上海海运学院:丁颂康) 1999年
(A) 自动化车床管理问题(北京大学:孙山泽)
(B) 钻井布局问题(郑州大学:林诒勋)
(C) 煤矸石堆积问题(太原理工大学:贾晓峰)
(D) 钻井布局问题(郑州大学:林诒勋)
2000年
(A) DNA序列分类问题(北京工业大学:孟大志)
(B) 钢管订购和运输问题(武汉大学:费甫生)
(C) 飞越北极问题(复旦大学:谭永基)
(D) 空洞探测问题(东北电力学院:关信)
2001年
(A) 血管的三维重建问题(浙江大学:汪国昭)
(B) 公交车调度问题(清华大学:谭泽光)
(C) 基金使用计划问题(东南大学:陈恩水)
(D) 公交车调度问题(清华大学:谭泽光)
2002年
(A) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)
(B) 彩票中的数学问题(解放军信息工程大学:韩中庚)
(C) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)
(D) 赛程安排问题(清华大学:姜启源)
2003年
(A) SARS的传播问题(组委会)
(B) 露天矿生产的车辆安排问题(吉林大学:方沛辰)
(C) SARS的传播问题(组委会)
(D) 抢渡长江问题(华中农业大学:殷建肃)
2004年
(A) 奥运会临时超市网点设计问题(北京工业大学:孟大志)
(B) 电力市场的输电阻塞管理问题(浙江大学:刘康生)
(C) 酒后开车问题(清华大学:姜启源)
(D) 招聘公务员问题(解放军信息工程大学:韩中庚)
2005年
(A) 长江水质的评价和预测问题(解放军信息工程大学:韩中庚)
(B) DVD在线租赁问题(清华大学:谢金星等)
(C) 雨量预报方法的评价问题(复旦大学:谭永基)
(D) DVD在线租赁问题(清华大学:谢金星等)
2006年
(A) 出版社的资源配置问题(北京工业大学:孟大志)
(B) 艾滋病疗法的评价及疗效的预测问题(天津大学:边馥萍)
(C) 易拉罐的优化设计问题(北京理工大学:叶其孝)
(D) 煤矿瓦斯和煤尘的监测与控制问题(解放军信息工程大学:韩中庚)
2007年
(A) 中国人口增长预测
(B) 乘公交,看奥运
(C) 手机“套餐”优惠几何
(D) 体能测试时间安排
2008年
(A)数码相机定位,
(B)高等教育学费标准探讨,
(C)地面搜索,
(D)NBA赛程的分析与评价
2009年
(A)制动器试验台的控制方法分析
(B)眼科病床的合理安排
(C)卫星和飞船的跟踪测控
(D)会议筹备
2010年
(A)储油罐的变位识别与罐容表标定
(B)2010年上海世博会影响力的定量评估
(C)输油管的布置
(D)对学生宿舍设计方案的评价
2011年
(A)城市表层土壤重金属污染分析
(B)交巡警服务平台的设置与调度
(C)企业退休职工养老金制度的改革
(D)天然肠衣搭配问题
2012年
(A)葡萄酒的评价
(B)太阳能小屋的设计
(C)脑卒中发病环境因素分析及干预
(D)机器人避障问题
2013年
(A)车道被占用对城市道路通行能力的影响
(B)碎纸片的拼接复原
(C)古塔的变型
(D)公共自行车服务系统
2014年
(A)嫦娥三号软着陆轨道设计与控制策略
(B)创意平板折叠桌
(C)生猪养殖场的经营管理
(D)储药柜的设计
2015年
(A)太阳影子定位
(B)“互联网+”时代的出租车资源配置
(C)月上柳梢头
(D)众筹筑屋规划方案设计
建模好处
1. 培养创新意识和创造能力
2.训练快速获取信息和资料的能力
3.锻炼快速了解和掌握新知识的技能
4.培养团队合作意识和团队合作精神
5.增强写作技能和排版技术
6.荣获国家级奖励有利于保送研究生
7.荣获国际级奖励有利于申请出国留学
8.更重要的是训练人的逻辑思维和开放性思考方式

‘叁’ 数学建模是关于什么的,具体做些什么大神们帮帮忙

数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,进入20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在即将进入21世纪的知识经济时代,数学科学的地位会发生巨大的变化,它正在从国或经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理伦与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。 应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Mathemathmatica,Matlab,Mapple,甚至排版软件等。 数学建模的几个过程: 模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。 模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。 模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具) 模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。 模型分析:对所得的结果进行数学上的分析。 模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。 模型应用:应用方式因问题的性质和建模的目的而异。

‘肆’ 数学建模具体有些什么内容如何进行

一、定义
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段.
数学建模就是用数学语言描述实际现象的过程.这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向.这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容.
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程.
数学模型一般是实际事物的一种数学简化.它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别.要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等.为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学.使用数学语言描述的事物就称为数学模型.有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代.
二、数学建模的几个过程
模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息.用数学语言来描述问题.
模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设.
模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构.
模型求利用获取的数据资料,对模型的所有参数做出计算(估计).
模型分析:对所得的结果进行数学上的分析.
模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性.如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释.如果模型与实际吻合较差,则应该修改假设,再次重复建模过程.
模型应用:应用方式因问题的性质和建模的目的而异.

‘伍’ 数学建模中的工程问题主要有哪些要用到什么知识最好举例说明,谢谢!

某工程有甲、乙两队合作6天完成,厂家需付甲乙两队共8700元,乙、丙2队合作10天完成,厂家需付9500元,甲、丙2队合做5天完成全部工程的2/3,厂家需付5500元。
(1)求甲、乙、丙各队单独完成全工程需多少天?
(2)若要求不超过15天完成全部工程,问由哪队单独完成此工程花的钱最少?

用二元一次方程组解的步骤如下:
设甲乙丙每队每天各完成x,y
由“乙丙两对合作10天完成”
得丙每天完成(1/10-y)
再依据题意有:
(x+y)*6=1
(x+1/10-y)*5=2/3
解得x=1/10,y=1/15
即甲每天完成1/10,乙每天完成1/15,再算得丙每天完成1/30

工期要求不超过15天完成全部工程,所以可由甲或乙队单独完成这项工程
可设甲队每天酬金m元,乙队每天n元
由“乙丙两队合作10天完成,厂家需付乙丙两队共9500元”可得
得丙每天酬金为9500/10-n=950-n
同上部分一样,可列方程:
(m+n)*6=8700
(m+950-n)*5=5500
解得m=800,n=650
即甲队每天需800元,乙队每天需650元

所以,由甲队完成共需工程款800*10=8000
由乙队完成共需工程款650*15=9750
8000<9750
因此由甲队单独完成此项工程花钱最少,需要8000元,且能在15天内完成

工程问题主要就是要知道这里面的效率,时间,总量。这是最基础的

‘陆’ 数学建模a题b题c题d题区别

每年的全国大学生数学建模比赛分两组:本科组 ,专科组。a、b供本科学生做;c、d供专科学生做。

全国大学生数学建模竞赛创办于1992年,每年一届,已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。

2018年,来自全国34个省/市/区(包括香港、澳门和台湾)及美国和新加坡的1449所院校/校区、42128个队(本科38573队、专科3555队)、超过12万名大学生报名参加本项竞赛。

数学建模比赛的概念:

简单地说:数模竞赛就是对实际问题的一种数学表述。具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。

更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。

数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。

以上内容参考:网络-中国大学生数学建模竞赛

阅读全文

与数学建模理工做什么题相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:736
乙酸乙酯化学式怎么算 浏览:1399
沈阳初中的数学是什么版本的 浏览:1345
华为手机家人共享如何查看地理位置 浏览:1037
一氧化碳还原氧化铝化学方程式怎么配平 浏览:880
数学c什么意思是什么意思是什么 浏览:1403
中考初中地理如何补 浏览:1293
360浏览器历史在哪里下载迅雷下载 浏览:696
数学奥数卡怎么办 浏览:1382
如何回答地理是什么 浏览:1018
win7如何删除电脑文件浏览历史 浏览:1050
大学物理实验干什么用的到 浏览:1479
二年级上册数学框框怎么填 浏览:1695
西安瑞禧生物科技有限公司怎么样 浏览:958
武大的分析化学怎么样 浏览:1243
ige电化学发光偏高怎么办 浏览:1332
学而思初中英语和语文怎么样 浏览:1646
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1481
数学中的棱的意思是什么 浏览:1053