⑴ 小学数学一柞等于几厘米
1拃长度大约是10厘米
这是小学二年级学的知识,要求二年级学生感知10厘米的大约长度,就直接用他们的手量出一拃,这样就大概是10厘米了。
(注:是用小学二年级学生的手来量出1拃;并且是“大约”长度,并非准确值。)
⑵ 数学兀是多少
3.14159…。圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。
π是个无理数,即不可表达成两个整数之比,是由瑞士科学家约翰·海因里希·兰伯特于1761年证明的。 1882年,林德曼(Ferdinand von Lindemann)更证明了π是超越数,即π不可能是任何整系数多项式的根。
圆周率的超越性否定了化圆为方这古老尺规作图问题的可能性,因所有尺规作图只能得出代数数,而超越数不是代数数。
国际圆周率日可以追溯至1988年3月14日,旧金山科学博物馆的物理学家Larry Shaw,他组织博物馆的员工和参与者围绕博物馆纪念碑做3又1/7圈(22/7,π的近似值之一)的圆周运动,并一起吃水果派。之后,旧金山科学博物馆继承了这个传统,在每年的这一天都举办庆祝活动。
⑶ 数学的公式有多少
看看数学公式
1.每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2
.1倍数×倍数=总倍数
总倍数÷1倍数=倍数
总倍数÷倍数=1倍数
3.
速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4
.单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5
.工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6
.加数+加数=和
和-一个加数=另一个加数
7.
被减数-减数=差
被减数-差=减数
差+减数=被减数
8.
因数×因数=积
积÷一个因数=另一个因数
9
.被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1.
正方形
C周长
S面积
a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2
.正方体
V:体积
a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3.
长方形
C周长
S面积
a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4
.长方体
V:体积
s:面积
a:长
b:
宽
h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5.
三角形
s面积
a底
h高
面积=底×高÷2
s=ah÷2
三角形高=面积
×2÷底
三角形底=面积
×2÷高
6
.平行四边形
s面积
a底
h高
面积=底×高
s=ah
7
.梯形
s面积
a上底
b下底
h高
面积=(上底+下底)×高÷2
s=(a+b)×
h÷2
8
.圆形
S面积
C周长
∏
d=直径
r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9
.圆柱体
v:体积
h:高
s;底面积
r:底面半径
c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10.
圆锥体
v:体积
h:高
s;底面积
r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者
和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或
小数+差=大数)
植树问题
1.
非封闭线路上的植树问题主要可分为以下三种情形:
⑴.如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵.如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶.如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2
.封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
⑷ 数学一共有多少个符号
加、减、乘、除、等、不等、大于、小于、大于等于、小于等于、小括号、中括号、大括号、分数号、比例号、小数点、零号、负号、虚数符号、绝对值符号、属于号、含于号、因为号、所以号、阶乘、求和符号、排列符号、组合符号、指数符号、方根符号、代数方程符号、函数符号、对数符号、符号e、符号π、初等几何符号(三角形、正方形、矩形、平行四边形、菱形、全等、相似、垂直、角等等)、角度符号(度、分、秒)、三角函数符号(正弦、余弦、正切、余切等等)、向量符号、还有增量、微分、积分、导数、极限、偏微分......太多了,数不过来。
⑸ 数学有多少分支
数学有26个分支,分别是:
1、数学史
2、数理逻辑与数学基础
3、数论
4、代数学
5、代数几何学
6、几何学
7、拓扑学
8、数学分析
9、非标准分析
10、函数论
11、常微分方程
12、偏微分方程
13、动力系统
14、积分方程
15、泛函分析
16、计算数学
17、概率论
18、数理统计学
19、应用统计数学
20、应用统计数学其他学科
21、运筹学
22、组合数学
23、模糊数学
24、量子数学
25、应用数学(具体应用入有关学科)
26、数学其他学科
(5)数学多少拃扩展阅读:
数学各个领域
基础与哲学
为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。数学逻辑专注于将数学置在一坚固的公理架构上,并研究此一架构的结果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。
现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性,千禧年大奖难题中的P/NP问题就是理论计算机科学中的着名问题。
离散数学
离散数学是指对理论计算机科学最有用处的数学领域之总称,这包含有可计算理论、计算复杂性理论及信息论。可计算理论检验电脑的不同理论模型之极限,这包含现知最有力的模型-图灵机。
复杂性理论研究可以由电脑做为较易处理的程度;有些问题即使理论是可以以电脑解出来,但却因为会花费太多的时间或空间而使得其解答仍然不为实际上可行的,尽管电脑硬件的快速进步。
最后,信息论专注在可以储存在特定媒介内的数据总量,且因此有压缩及熵等概念。做为一相对较新的领域,离散数学有许多基本的未解问题。其中最有名的为P/NP问题-千禧年大奖难题之一。一般相信此问题的解答是否定的。
应用数学
应用数学思考将抽象的数学工具运用在解答科学、工商业及其他领域上之现实问题。应用数学中的一重要领域为统计学,它利用概率论为其工具并允许对含有机会成分的现象进行描述、分析与预测。
大部份的实验、调查及观察研究需要统计对其数据的分析。(许多的统计学家并不认为他们是数学家,而比较觉得是合作团体的一份子。)数值分析研究有什么计算方法,可以有效地解决那些人力所限而算不出的数学问题;它亦包含了对计算中舍入误差或其他来源的误差之研究。
⑹ 一拃长13厘米,一米有几拃二年级数学题
一米有7.7拃。
解:设一米有x拃。
因为1米=100厘米,
那么根据题意可列比例方程为,
1/13=x/100
解方程可得x=100/13≈7.7
即一米有7.7拃。
(6)数学多少拃扩展阅读:
1、比例的分类
(1)正比例
两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。可以用y=kx(k为定值)表示。
(2)反比例
两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。可以用xy=k(k为定值)表示。
2、比例的性质
若a:b=c:d(a、b、c、d≠0),该比例则有如下性质。
(1)比例的基本性质
ad=bc,即两个外项的积等于两个内项的积。
(2)交换律
交换比较,结果仍然相等,即b:a=d:c、a:c=b:d、c:a=d:b
(3)结合律
a:(a+b)=c:(c+d) ( a+b≠0,c+d≠0)、(a-b):(a+b)=(c-d):(c+d) ( a+b≠0,c+d≠0)
参考资料来源:网络-比例
⑺ 数学中e的值是多少
e = 2.71828183
自然常数,是数学中一个常数,是一个无限不循环小数,且为超越数,约为2.71828,就是公式为 Iim (1+1/ x ) x , x →< X >或 Iim (1+z)1/ z , z →0,是一个无限不循环小数,是为超越数。
e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数,以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔引进对数。它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。
(7)数学多少拃扩展阅读:
e的由来:一个最直观的方法是引入一个经济学名称“复利”。复利率法,是一种计算利息的方法。按照这种方法,利息除了会根据本金计算外,新得到的利息同样可以生息,因此俗称“利滚利”、“驴打滚”或“利叠利”。
只要计算利息的周期越密,财富增长越快,而随着年期越长,复利效应亦会越为明显。在引入“复利模型”之前,先试着看看更基本的 “指数增长模型”。大部分细菌是通过二分裂进行繁殖的,假设某种细菌1天会分裂一次,也就是一个增长周期为1天,这意味着:每一天,细菌的总数量都是前一天的两倍。
如果经过x天(或者说,经过x个增长周期)的分裂,就相当于翻了x倍。在第x天时,细菌总数将是初始数量的2x倍。如果细菌的初始数量为1,那么x天后的细菌数量即为2x。
上式含义是:第x天时,细菌总数量是细菌初始数量的Q倍。如果将 “分裂”或“翻倍”换一种更文艺的说法,也可以说是:“增长率为100%”。这个公式的数学内涵是:一个增长周期内的增长率为r,在增长了x个周期之后,总数量将为初始数量的Q倍。
⑻ 二年级数学达标作业;用拃量课桌,课桌大约有几拃一拃是否是一卡
一拃不是一卡。拃,读作zhǎ。基本字义是 张开大拇指和中指(或小指)量长度;也作为 量词,指张开大拇指和中指(或小指)两端的距离:两拃宽。一庹的距离到底有多长,它是因人而异,因手掌的大小而异的,不可能是一个固定的长度。
一般含义:
1、动词。
张开大拇指和中指(或小指)来量长度[span;measure by handspans]。如:把桌子拃一拃。
2、量词。
张开的大拇指和中指(或小指)两端间的距离 [span]。如:这块布有三拃宽。
英文翻译:
to span (measure with one's hand);
span (unit of length based on the width of the expanded human hand)
为了使学生知道各自一庹的长度,可以由学生自己量一量。把手掌张开,按在桌面上,摆好一个固定的姿势,用同样的力量,从某一点开始往前量。比如量了5拃,先用尺量出总长度,再被5除,求出平均值,就是自己一拃的长度。
有时,为了量一量桌面的长和宽,身边又没有尺子,在不要求十分精确的情况下,倒是可以用拃量一量,也能够量出大约的长度来。这是随身携带的用起来又非常方便的“尺子”。
(8)数学多少拃扩展阅读:
方言集汇
◎ 粤语:zaa6
◎ 客家话:[客英字典] zan3 (cok7) [台湾四县腔] zan3 cok7 (ngiam5) [梅州腔] zak7 [海陆丰腔] zan3 cok7 (ngiam5)
◎北方一些地方(如天津)习惯说为hǎ
⑼ 数学的符号有多少个
小学算术里,我们认识了自然数1,2,3,……,分数1/2,2/3,……,小数0.5,1.3,……,圆周率π=3.1415926……,经常用这些数进行+,-,×,÷四则运算。这些数学符号已经成为我们的朋友。
1+2表示什么?它可以表示一个人加上两个人,也可以表示一棵树加两棵树,还可以表示其它的事物。数学符号可以表示十分广泛的客观事物,又简单实用。这是其它语言无法比拟,也正是数学符号的威力和奥秘所在。
数学符号有多少个呢?据统计,初、高等数学中经常使用的数学符号有两百多个,中学数学中常见的符号也有一百多个。
表示数的字母及表示几何图形的符号,叫做元素符号。例如,用a,b,c表示已知数,用x,y,z表示未知数;在证明两个三角形全等时,用(s,s,s)表示三条边对应相等,(s,a,s)表示两边及其夹角对应相等,(a,s,a)表示两角及其夹边对应相等,以及圆周率π,单位虚数i,自然对数的底e,这些都是元素符号。还有1,2,3, 1/2,2/3,0.5,1.3,它们都是元素符号。
+,-,×,÷表示表示数之间进行加法、减法、乘法、除法运算。这种表示按照某种规则进行运算的符号叫做运算符号。两个集合的并集(∪),交集(∩),对n进行求和(∑[1≤k≤n]f(k)),不定积分(∫f(x)δx ),从a到b的定积分(∫[a:b]f(x)δx),这些都是运算符号 。
等号(=),近似等号(≈),不等于号(≠),大于号(>),小于号(<),恒等或同余号(≡),相似号(≈),全等号(≌),这些符号表示数、式或图形之间的关系,叫做关系符号。还有平行符号(‖),垂直符号(⊥),比符号(∶),属于符号(∈),这些都是关系符号。
在数学里,还有一些约定的符号,以表示特定的含义或式子。因为(∵),所以(∴),n个元素中取出m个元素的组合数(C(n:m)),n个元素中取出m个元素的排列数(A(n:m)), 这些叫做约定符号。
还有一些符号,例如圆括号(()),方括号([ ]),花括号({})等等,叫做辅助符号,又叫做结合符号。
数学世界真是一个符号的大千世界!
数学符号是怎么样产生的呢?
我国是民界上文化发达最早的国家之一。数码这种数学中的元素符号,早在公元前两千年就在我国产生了。汉朝刘向写的一本书《世本》中,就有这样一句话:“黄帝时,隶首作数”。公元前一千年左右,文王周公所撰《易系辞》中就有“上古结绳而治,后世圣人易之以书契”的记载。
在代数中,最早使用一整套数学符号的,一般认为是古西腊的丢番都(Diophantus,约前330-246).后人把他的代数称为缩写代数,而把古埃及、古巴比伦人的代数称为文字叙述代数。这种文字叙述代数,一直延缓到欧洲文艺复兴时期。
十五世纪,在德国人瓦格涅尔和韦德曼的着作里,首先使用“+”和“-”这两个符号,表示箱子重量的“盈”和“亏”。后来才被数学家用作加号和减号。“×”号是由十七世纪的英国数学家欧德莱最先使用的。“÷”号是十七世纪由瑞士人拉恩创造的。
“=”号是英国列科尔德在论文《砺智石》中提出的。方括号[]和花括号{}是法国数学家韦达(Verte,1540-1603)引入的。“∶”是法国数学家笛卡儿(Descartes,1506-1650)首先使用的。∽、≌和dx(微分)是德国数学家莱布尼兹(Leibniz,1646-1716)创用的。
导数符号”f1(x)”、”y1”是法国数学家拉格朗日(Lagrange,1736-1813)创造的,不定积分“∫”是瑞士数学家宝贝努里首先使用的,定积分“∫[a:b]f(x)δx”(这里是网络写法)是法国数学家富里哀(Foueer,1768-1830)发明的。
瑞士数学家欧拉(Euler,1707-1783)一生创造了许多数学符号,如π,e,sin,cos,tan,∑,f(x)等。法国数学家柯西(Cauchy,1789-1857)也是符号大师,行列式的两条竖线是他于1841年引进的。
上面列的一长串清单,显示了数学中一部分符号的来历。从中可以看出,数学符号是人类集体智慧的产物,是一代代数学家心血的结晶。
科学的发展,不断对数学提出新的要求。数学的发展过程中,不断产生新的数学符号,同时逐渐淘汰那些不适用的数学符号。如
中国的古代数学也有自己的一套符号,在历史上曾起过积极的作用。但与西方相比,自显繁复,不便于应用。例如,在普通新代数教科书(1905年)仍把未知数x,y,z写成天,地,人,把已知数a,b,c写成甲,乙,丙,把数字1,2,3写成一,二,三。在这样的符号系统下,本来很普通的代数式写成了十分繁琐艰涩的形式。
这样的符号当然属于淘汰之列。我国系统地采用现代数学符号,是在辛亥革命(1910年)之后。1919年“五四”运动以后才完全普及。
现代的数学符号,由于它含义确定,表达简明,使用方便,从而极大地推动了数学的发展。在数学里,有人把十七世纪叫做天才的时期,把十八世纪叫做发明的时期,在这两个世纪里,为什么数学有较大的发展并取得较大成就呢?究其原因,恐怕与创造了大量的数学符号不无密切的联系。
甚至有的专家指出,中国古代数学领先,近代数学落后了,原因之一就是中国没有使用先进的数学符号,从而阻碍了数学的发展。这话虽然有偏颇的一面,但的确道出了数学符号对数学发展所能起的重要作用!
数学符号威力巨大、魅力无穷。它是数学中特殊的“文字”,记录和传递着丰富的数学信息,它也是无声的音符,在人们的心灵深处激荡出美妙的乐章,它更是深奥严谨的数学理论的“源泉”之一,滋润着文明之花。作为一名中学生,请重视对数学符号的学习引用吧!只有这样,才能使我们的思维更加敏捷、严谨和深刻。
⑽ 数学符号一共有多少啊
数学实用工具:数学符号大全
1、几何符号
⊥ ‖ ∠ ⌒ ⊙ ≡ ≌ △
2、代数符号
∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶
3、运算符号
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号
∪ ∩ ∈
5、特殊符号
∑ π(圆周率)
6、推理符号
|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ←
↑ → ↓ ↖ ↗ ↘ ↙ ‖ ∧ ∨
&; §
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
Γ Δ Θ ∧ Ξ Ο ∏ ∑ Φ Χ Ψ Ω
α β γ δ ε ζ η θ ι κ λ μ ν
ξ ο π ρ σ τ υ φ χ ψ ω
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ
ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ
∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ‖ ∧ ∨ ∩ ∪ ∫ ∮
∴ ∵ ∶ ∷ ∽ ≈ ≌ ≈ ≠ ≡ ≤ ≥ ≤ ≥ ≮ ≯ ⊕ ⊙ ⊥
⊿ ⌒ ℃
指数0123:o123
7、数量符号
如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号
如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号
如小括号“()”中括号“〔〕”,大括号“{}”横线“—”
10、性质符号
如正号“+”,负号“-”,绝对值符号“| |”正负号“±”
11、省略符号
如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),
∵因为,(一个脚站着的,站不住)
∴所以,(两个脚站着的,能站住) 总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
12、排列组合符号
C-组合数
A-排列数
N-元素的总个数
R-参与选择的元素个数
!-阶乘 ,如5!=5×4×3×2×1=120
C-Combination- 组合
A-Arrangement-排列
13、离散数学符号
├ 断定符(公式在L中可证)
╞ 满足符(公式在E上有效,公式在E上可满足)
┐ 命题的“非”运算
∧ 命题的“合取”(“与”)运算
∨ 命题的“析取”(“或”,“可兼或”)运算
→ 命题的“条件”运算
A<=>B 命题A 与B 等价关系
A=>B 命题 A与 B的蕴涵关系
A* 公式A 的对偶公式
wff 合式公式
iff 当且仅当
↑ 命题的“与非” 运算( “与非门” )
↓ 命题的“或非”运算( “或非门” )
□ 模态词“必然”
◇ 模态词“可能”
φ 空集
∈ 属于(??不属于)
P(A) 集合A的幂集
|A| 集合A的点数
R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”
(或下面加 ≠) 真包含
∪ 集合的并运算
∩ 集合的交运算
- (~) 集合的差运算
〡 限制
[X](右下角R) 集合关于关系R的等价类
A/ R 集合A上关于R的商集
[a] 元素a 产生的循环群
I (i大写) 环,理想
Z/(n) 模n的同余类集合
r(R) 关系 R的自反闭包
s(R) 关系 的对称闭包
CP 命题演绎的定理(CP 规则)
EG 存在推广规则(存在量词引入规则)
ES 存在量词特指规则(存在量词消去规则)
UG 全称推广规则(全称量词引入规则)
US 全称特指规则(全称量词消去规则)
R 关系
r 相容关系
R○S 关系 与关系 的复合
domf 函数 的定义域(前域)
ranf 函数 的值域
f:X→Y f是X到Y的函数
GCD(x,y) x,y最大公约数
LCM(x,y) x,y最小公倍数
aH(Ha) H 关于a的左(右)陪集
Ker(f) 同态映射f的核(或称 f同态核)
[1,n] 1到n的整数集合
d(u,v) 点u与点v间的距离
d(v) 点v的度数
G=(V,E) 点集为V,边集为E的图
W(G) 图G的连通分支数
k(G) 图G的点连通度
△(G) 图G的最大点度
A(G) 图G的邻接矩阵
P(G) 图G的可达矩阵
M(G) 图G的关联矩阵
C 复数集
N 自然数集(包含0在内)
N* 正自然数集
P 素数集
Q 有理数集
R 实数集
Z 整数集
Set 集范畴
Top 拓扑空间范畴
Ab 交换群范畴
Grp 群范畴
Mon 单元半群范畴
Ring 有单位元的(结合)环范畴
Rng 环范畴
CRng 交换环范畴
R-mod 环R的左模范畴
mod-R 环R的右模范畴
Field 域范畴
Poset 偏序集范畴
+ plus 加号;正号
- minus 减号;负号
± plus or minus 正负号
× is multiplied by 乘号
÷ is divided by 除号
= is equal to 等于号
≠ is not equal to 不等于号
≡ is equivalent to 全等于号
≌ is approximately equal to 约等于
≈ is approximately equal to 约等于号
< is less than 小于号
> is more than 大于号
≤ is less than or equal to 小于或等于
≥ is more than or equal to 大于或等于
% per cent 百分之…
∞ infinity 无限大号
√ (square) root 平方根
X squared X的平方
X cubed X的立方
∵ since; because 因为
∴ hence 所以
∠ angle 角
⌒ semicircle 半圆
⊙ circle 圆
○ circumference 圆周
△ triangle 三角形
⊥ perpendicular to 垂直于
∪ intersection of 并,合集
∩ union of 交,通集
∫ the integral of …的积分
∑ (sigma) summation of 总和
° degree 度
′ minute 分
〃 second 秒
# number …号
@ at 单价