A. 数学模型有哪些
数学模型(mathematical model)就是用数学的语言、方法去近似地刻画实际,描述现实问题的数学公式、图形或算法。
数学模型可按不同的方式进行分类。
按照模型的应用领域,可分为人口模型、生物模型、生态模型、交通模型、环境模型、作战模型、社会模型、经济模型、医学模型、机械模型等。
按照建立模型的数学方法,可分为微分方程模型、几何模型、网络模型、运筹模型、随机模型等。
按照建模目的,可分为描述模型、分析模型、预测模型、决策模型、控制模型等。
按照对模型结构的了解程度,可分为白箱模型、灰箱模型、黑箱模型。白箱是指对所涉及问题的机理很清楚,黑箱是完全不了解问题的内部机理,灰箱则介于两者之间。
根据模型的表现形态还可分为:静态模型和动态模型、解析模型和数值模型、离散模型和连续模型、确定性模型和随机性模型。
数学模型和数学建模介绍
数学建模(mathematical modeling)就是通过建立数学模型来解决各种实际问题的方法,也就是通过对实际问题的抽象、简化,确定变量和参数,并应用某些规律建立起变量、参数之间的关系。求解该数学问题,解释、验证所得到的解,从而确定能否用于解决实际问题。数学建模最重要的特点在于它是一个接受实践检验、多次修改、逐渐完善的过程。
数学建模没有固定的格式和标准,也没有明确的方法,通常由明确问题、合理假设、搭建模型、求解模型、分析检验等五个步骤组成。
一个理想的数学模型,应尽可能满足以下两个条件:
模型的可靠性:在误差允许范围内,能正确反映客观实际;
模型的可解性:模型能够通过数学计算,得到可行解。
一个实际问题往往很复杂的,影响因素也有很多,要解决实际问题,就要将实际问题抽象简化、合理假设,确定变量和参数,建立合适的数学模型,并求解。模型的可靠性和可解性通常互相矛盾,一般总是在模型可解性的前提下力争较满意的可靠性。
B. 数学模型有哪些呢
数学模型如下:
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)。
2、数据拟合、参数估计、插值等数据处理算法。
3、线性规划、整数规划、多元规划、二次规划等规划类问题。
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法。
7、网格算法和穷举法。
8、一些连续离散化方法。
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)。
10、图象处理算法。
建模要求:
1)真实的、系统的、完整的,形象的反映客观现象。
2)必须具有代表性。
3)具有外推性,即能得到原型客体的信息,在模型的研究实验时,能得到关于原型客体的原因。
4)必须反映完成基本任务所达到的各种业绩,而且要与实际情况相符合。
C. 常见的数学模型有哪些(常见的数学模型有哪些例子)
1、常见的数学模型有哪些?。
2、常见的数学模型有哪些例子。
3、常用的数学模型有哪些。
4、数学中有哪些模型。
1.优化模型。
2.优化模型包括四个要素:决策变量、目标函数、约束条件、求解方法。
3.微分方程模型。
4.微分方程模型一般适用于动态连续模型,当描述实际对象的某些特性随时间或空间而演变的过程、分析它的变化规律、预测它的未来性态,研究它的控制手段时,通常要建立对象的动态模型。
5.概率统计模型。
6.概率统计模型包括预测模型、经济计量模型和马尔可夫链模型三种模型。
D. 对于传感器的动态数学模型,频域模型采用什么来表示
采用拉普拉斯变换将实数域的微分方程变成复数域来表示。
对于传感器的动态数学模型,频域模型一般情况都是采用拉普拉斯变换将实数域的微分方程变成复数域这个方法来表示的。
传感器的动态特性在动态(快速变化)的输入信号情况下,要求传感器不仅能精确地测量信号的幅值大小,而且能测量出信号变化的过程。这就要求传感器能迅速准确地响应和再现被测信号的变化。也就是说,传感器要有良好的动态特性。