⑴ 什么是交集集合a与集合b的交集怎样用符号表示怎样用图形表示
集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的元素,叫做子集A与集合B的交集。集合a与集合b的交集的符号表示为:A∩B。
图形表示如下:
交集定义:由属于A且属于B的相同元素组成的集合,记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}, 如右图所示。注意交集越交越少。若A包含B,则A∩B=B,A∪B=A。
并集定义:由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B},如右图所示。注意并集越并越多,这与交集的情况正相反。
(1)相交用数学符号怎么表示扩展阅读:
集合的特性
1、确定性
给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。
2、互异性
一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。
3、无序性
一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。
⑵ 怎样记数学中的交与并的符号
交集:符号 ∩,意思是两个集合中相同的元素,记忆方法:交集的符号就是一个圆拱门。
并集:符号 ∪,意思是取两个集合的全部元素,记忆方法:并集的符号就是门倒过来。
举例
(1)集合 {1,2,3} 和 {2,3,4} 的交集为 {2,3}。即{1,2,3}∩{2,3,4}={2,3}。
(2)数字9不属于质数集合 {2,3,5,7,11, ...} 和奇数集合 {1,3,5,7,9,11, ...}的交集。即9∉{x|x是质数}∩{x|x是奇数}。
集合{1, 2, 3} 和 {2, 3, 4} 的并集是 {1, 2, 3, 4}。数字 9 不属于质数集合 {2, 3, 5, 7, 11, …} 和偶数集合{2, 4, 6, 8, 10, …} 的并集,因为 9 既不是素数,也不是偶数。
(2)相交用数学符号怎么表示扩展阅读:
二元并集(两个集合的并集)是一种结合运算,即A∪(B∪C) = (A∪B) ∪C。事实上,A∪B∪C也等于这两个集合,因此圆括号在仅进行并集运算的时候可以省略。相似的,并集运算满足交换律,即集合的顺序任意。
空集是并集运算的单位元。 即 ∅ ∪A=A。对任意集合A,可将空集当作零个集合的并集。