① 小学五年级数学苏教版学案
五年级数学上册讲学稿 编写人员 : 刘 玲 踪伟荣 认识负数(一) 、 ,完成练习一第 1—6 题。学习内容:第 1—3 页的例 1、例 2 及“试一试”“练一练”学习目标:1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。学习重点:在现实情景中理解正负数及零的意义。学习难点:用正负数描述生活中的现象。学习过程:一、 课前预习。1.你能举出生活中正数和负数的例子吗2.请你写出两个正数和两个负数。二.理解正负数的意义(一)出示例 11. 从图中你能知道些什么?2. 你是怎样知道每个城市气温的?你是怎样看温度计的?3. 讨论交流:你能用巧妙的方法来记录这上海和北京两个地方相反的气温吗?零上 4 ℃记作( ),零下 4 ℃记作( )巩固气温的表示方法。 。练习第 2 页的“试一试”(二)出示例 2,深入理解负数你从图中能知道些什么?你能用今天所学的知识表示这两个海拔高度吗?以海平面为基准,比海平面高 8 844.43 米,可以记作:( )米;比海平面低 155 米,可以记作:( )米。观察这些数,你能把它们分类吗? ,- 4、19、 4、- 11、- 7、 8 844.43、- 155 、0你为什么这样分?练习巩固。(1)完成第 3 页“练一练”第 1 题(在原题中增加 0)。 提问: (1)0 为什么不写? (2)观察这些正数,你发现了什么?完成第 6 页第 2 题。提问:读一读下面的海拔高度,你知道些什么?三、用“多层练习”巩固——拓展负数的的外延 1.基本练习。 每人写出 5 个正数和 5 个负数,并进行交流。 读出所写的数,并判断写的是否正确。 2.对比练习。 选择合适的结果天在括号内: 2007 年,我国发射成功的嫦娥卫星在太空中向阳面的温度为( )以上,而背阳面却低于( ), 但通过隔热和控制,卫星舱内的温度始终保持在( ),保证了卫星能够正常开展探测工作。 ① 21℃ ② 100℃ ③ -100℃ 3.拓展延伸。 调查自己家一个月的收入、支出情况,并作好记录,记录后对数据进行分析,把自己的感受与家人说一说,用数学日记记下自己的感受及开支建议。 纠 错 栏 认识负数(二) “试一试”“练一练”及相关习题。学习内容:第 3-5 页的例 3 例 4、 、学习目标: 1、在盈与亏、收与支、升与降、增与减以及朝两个相反方向运动等现实的情境中应用负数,进一步理解负数的意义。2、体验数学与日常生活密切相关,、激发学生对数学的兴趣。学习重点:应用正数和负数表示日常生活中具有相反意义的数量。学习过程一、知识回顾读一读,分一分。3000 4200 -1800 2700 -900 3700 正数 负数二、学习新知学习例 3,出示统计图说明:通常情况下,盈利用正数表示,亏损用负数表示。表中哪几个月盈利?哪几个月亏损?从表中你还能知道些什么?根据新光服装店去年下半年的盈亏情况,填写下表。七月份:亏损 1200 元; 八月份:亏损 850 元;九月份:盈利 2500 元; 十月份:盈利 4300 元;十一月份:盈利 3700 元; 十二月份:亏损 250 元; 月 份 七 八 九 十 十一 十二 盈 亏(元)学习例 41、出示情境图,辨别方向。小华从学校出发,沿东西方向的大街走了 2100 米,到了什么地方?如果把向东走 2100 米记作2100 米,那么向西走 2100 米可以记作什么?可以把向西走 2100 米记作2100 米吗?那么向东走 2100 米记作什么?2、表示南北方向运动的路程 从学校出发,沿南北方向的大街走 1240 米可以走到哪里?根据行走的方向和路程,分别写出一个正数和一个负数。 在小组里说说你的想法。3、试一试:(1) 你会填一填、读一读吗? -5 -2 -1 0 1 2 4 说一说你是怎样想的?(2) -2 接近 2,还是接近 0? 正数和负数在数轴上的排列方向是怎样的?4、练一练1、小明家今年六月份收入和支出的记录。你能说一说小明家各项收入和支出的情况吗?2、(1)如果张军向东走 30 米,记作30 米,那么李刚向西走 52,记作( )米。(2)如果张军向北走 40 米,记作40 米,那么李刚走“-40 米” 表示他向 , ( 走了 ) ( 。 )四、巩固练习。1、你能在括号里填上合适的数吗?(1)升降机上升 8 米记作8 米,下降 5 米记作( )米。(2)一幢大楼 18 层,地面以下有 2 层。地面以上第 3 层记作3 层,地面以下第 1 层记( ) 层,地面以下第 2 层记作( )层。(3)学校举行自然科学知识竞赛,抢答题的评分规则是答对一题加 100 分,答错一题扣 10 分。如果把加 100 分记作100 分,那么扣 10 分应记作( )分。2、你能说说存折中红线框处的数各表示什么吗?妈妈于 6 月 10 日又存入 2000 元,在存折上应记作( )元;6 月 25 日取出 400 元,在存折上应记作( )元 纠 错 栏 认识负数练习课学习内容:认识负数相关习题。学习目标: 1、学会在盈与亏、收与支、升与降、增与减以及朝两个相反方向运动等现实情境中应用负数,从而进一步理解负数的意义。 2、经历在现实的情境应用负数的过程,体验负数的作用和使用方法。 3、在学习的过程中,充分感受数学来源于生活,数学在生活中有着广泛的应用,提高学习数学的兴趣,增强学好数学的信心。学习重点:应用正数和负数表示日常生活中具有相反意义的数量学习难点:体会两种具有相反意义的量 一、基础练习 根据新光服装店下半年的盈亏情况,填写下表。 七月份:亏损 1200 元; 八月份:亏损 550 元 九月份:盈利 2200 元 十月芬:赢利 4300 元 十一月份:赢利 3700 元; 十二月份:赢利 2000 元 这些信息,你觉得小店的情况怎样?你能用我们最简洁的方法,最快的速度把上面的信息反映在下表中吗? 月份 七 八 九 十 十一 十二盈亏(元) 二、专项练习 1、一幢大楼 18 层,地面以上有 2 层。地面以上第 3 层记作3 层,地面以下第 1 层记作( )层,地面以下第 2 层记作( )。 2、升降机上升 8 米记作8 米,下降 5 米记作( )米 3、水库的水位变化时,我们如果把上升 5 米记作5 米,那么下降 3 米记作( )米,上升 3 米呢? 4、学校举行自然科学知识竞赛,抢答题的评分规则是答对一题加 100 分,答错一题扣10 分。如果把加 100 分记作100 分,那么扣 10 分记作( )分 5、如果如果张军向东走 30 米,记作30 米,那么李刚向西走 50 米,记作( )米。 6、如果张军向北走 40 米,记作40 米,那么李刚走“-40 米”表示他向( )走了( )米。 7、上车 3 人记作3 人,下车 8 人记作( )人。 三、提高应用(1)6名同学参加数学竞赛。老师蒋80分作为标准将他们的成绩简记为:+3,+10, 0,+7,-4,-5,这6名同学的实际成绩分别是多少?平均成绩是多少? 。(2)一种精密仪器的长度标明为:10±0.05(单位:毫米) 你知道这种零件的标准长度是多少毫米吗?它的最大和最小长度分别是多少?(3)完成练习一第十题五、课堂小结: 。 纠 错 栏 实践活动:面积是多少学习目标:1. 复习面积的意义、常用的面积单位、长方形和正方形的面积计算公式,初步建立图形的等积变形思想。2. 体会转化、估计等解决问题的策略,为教学平行四边形等图形的面积计算作比较充分的知识准备和思想准备。3. 学习重难点:对图形进行分解与组合、分割与移拼的转化方法学具准备:学具盒学习过程:一、分一分、数一数1、下面两个图形的面积分别是多少平方厘米?你能先把每个图形分成几块,再数一数吗?2、你是怎样分的?怎样数的?在小组里交流一下。二、移一移、数一数1、怎样移动右边图形中的一部分,能很快数出它的面积?2、利用分割与平移,保持面积不变,把多边形转化为长方形,计算它的面积。这个图形的面积是多少?三、数一数、算一算1、下面是牧场中一个池塘的平面图。先把池塘上面整格的和不满整格的分别涂上不同的颜色,数一数各有多少个,再算出池塘面积大约是多少平方米?(不满整格的, 。 都按半格计算)2、你算出的面积大约是多少? 这样的算法合理吗? 在小组里说说自己的想法。3、你能算出右边树叶的面积大约是多少平方厘米吗?四、估一估、算一算1、采集几片树叶,先估计他们的面积个是多少平方厘米,再把树叶描在第 122 页的方格纸上,用数方格的方法算促他们的面积。2、你能用这样的方法算出自己手掌的面积吗?五、小结:今天我们进行面积是多少实践活动,怎样计算不规则图形的面积呢? 平行四边形面积的计算 、 。学习内容:第 12—14 页的例 1、例 2、例 3 及“试一试”“练一练”学习目标: 1、在理解的基础上掌握平行四边形面积计算公式,能正确计算平行四边形的面积。 2、通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用。 3、培养分析、综合、抽象、概括和解决实际问题的能力。学习重点:理解并掌握平行四边形的面积公式学习难点:理解平行四边形面积公式的推导过程学习过程:一、知识回顾: 1、说出学过的平面图形。 2、在这些图形中,哪些图形的面积你会求?二、探究新知: 1、学习例 1: (1)出示例 1 中的第 1 组图 要求:下面的两个图形面积是否相等?在小组里说一说你准备怎样比较这两个图形的面积。(学生分组活动后组织交流) (2)出示例 1 中的第 2 组图 要求:不用刚才的方法还能比较这两个图形的大小吗? 2、学习例 2: (1)出示一个平行四边形 你能想办法把这个平行四边形转化成学过的图形吗? 第一种: 第二种:(4)小组讨论: ①转化后长方形的面积与原平行四边形面积相等吗? ②长方形的长与平行四边形的底有什么关系? ③长方形的宽与平行四边形的高有什么关系? 3、学习例 3: (1)提问:是不是任意一个平行四边形都能转化成长方形?都能推导出平行四边形的面积公式呢?请大家从教科书第 123 页上任选一个平行四边形剪下来,先把它转化成长方形,再求出面积并填写下表。 转化后的长方形 平行四边形长(cm) 宽(cm) 面积(cm) 底(cm) 高(cm) 面积(cm) (2)学生操作,反馈交流。 (3)用字母表示面积公式:( )三、巩固练习:1、出示书上“试一试” 读题,说说已知什么,求什么? 独立解答,反馈,说说应用了哪一个计算公式?2、做书上的练一练3、拿出你手中的平行四边形纸片想办法求出它的面积.四、课堂小结: 。 纠 错 栏 平行四边形面积的计算练习课学习内容:练习二及有关习题。学习目标:使学生进一步熟悉平行四边形的面积公式并能熟练地加以运用。学习重点:应用所学的知识解决一些实际问题。学习过程: 一、基本练习 1、填空: (1)把一个平行四边形转化成一个( ),它的面积和原来的平行四边形( , )平行四边形的底是长方形的( , )长方形的宽和平行四边形的( )相等。 (2)平行四边形面积的计算公式是( ),用含有字母的式子表示是( )。 2、在括号里填上适当的数。 3.4 平方米 平方分米 708 平方厘米 平方米 0.12 平方分米 平方厘米 4430 平方厘米 平方分米 平方厘米 3、填空。 (1)平行四边形的底不变,高扩大 2 倍,面积( )。 (2)平行四边形的底和高都扩大 2 倍,面积( )。 (3)平行四边形的底扩大 6 倍,高缩小 2 倍,面积( )。二、应用练习: 1、完成练习二第 3 题 2、一个平行四边形的停车场,底是 63 米,高是 25 米。平均每辆车占地 15 平方米,这个停车场可停车多少辆?3、一块平行四边形的麦田,底 250 米,高 84 米,共收小麦 14.7 吨。这块麦田有多少公顷?平均每公顷收小麦多少吨? (1)独立列式解答 (2)如果问题改为:“每公顷可收小麦 7000 千克,这块地共可收小麦多少千克? ①必须知道哪两个条件? ②独立列式 (3)如果问题改为:“一共可收小麦 58500 千克,平均每公顷可收小麦多少千克”又该怎样想?三、探索实践 用细木条钉成一个长方形框,长 12 厘米,宽 7 厘米。它的周长和面积各是多少?如果把它拉成一个平行四边形,它的周长变化了没有?面积呢?你能说说这是为什么吗?五、课堂小结: 。 纠 错 栏 三角形面积的计算 、学习内容:第 15 页的例 4、例 5、及“试一试”“练一练”练习三 5-8 题。学习目标: 1、经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。 2、进一步体会转化方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。学习重点:理解并掌握三角形面积的计算公式学习难点:理解三角形面积公式的推导过程学习过程:一、知识回顾: 出示一个底是 4 分米,高是 3 分米的平行四边形。 这是一个什么图形?它的面积如何计算?二、探究新知: 1、学习例 4: 仔细观察这 3 个平行四边形,请说出如何求每个涂色的三角形的面积? 先自己想,随后在小组中交流。 你是怎样求出每个涂色的三角形的面积? 三角形与平行四边形究竟有怎样的关系? 三角形的面积应当如何计算? 2、学习例 5: (1)出示例 5: (注意:组内所选的三角形都要齐全) 用例 5 中提供的三角形拼成平行四边形。 (2)小组交流: 你认为拼成一个平行四边形所需要的两个三角形有什么特点? (3)测量数据计算拼成的平行四边形的面积和一个三角形的面积并填表。 小组交流:如何计算一个三角形的面积? 从表中可以看出三角形与拼成的平行四边形还有怎样的关系? 得出以下结论: 这两个 的三角形,无论是直角、锐角,还是钝角三角形,都可以拼成 这个平行四边形的底等于 这个平行四边形的高等于 因为 每个三角形的面积等于拼成的平行四边形面积的 所以 三角形的面积= (4)用字母表示三角形面积公式:三、巩固练习: 1、完成试一试: 2、完成练一练: (1)先回忆拼得过程,再回答。 (2)你是如何想的。 3.判断。 (1)两个形状一样的三角形,可以拼成一个平行四边形.…… 2平行四边形面积一定比三角形面积大.…… 3一个平行四边形与一个三角形等底等高那么平行四边形的面积一定是三角形的 2 倍.……… 4底和高都是 0.2 厘米的三角形面积是 0.2 平方厘米……. 4.完成课本第 17 页第 6 题。 5、拓展练习 量出你的三角板两个任选一个的底和高然后算出它的面积。四、课外延伸:阅读第 16 页“你知道吗”五、课堂小结: 。 纠 错 栏 三角形面积的计算练习课 学习内容:练习三第 4-10 题及思考题 学习目标: 进一步掌握梯形面积的计算公式,能正确、熟练地计算梯形的面积。 学习重点:应用所学的知识解决一些实际问题。 学习过程: 一、基本练习 1、 口算下列各题 8× 600 300÷ 50 44× 200 68 ÷34 11 × 400 240 ÷60 12 × 100 480÷ 4 2、填空 (1)一个三角形的高是 5 厘米,它的底是 2.5 厘米,面积是( )平方厘米。 (2)在一个长 12 厘米,宽 6 厘米的长方形纸里剪一个最大的三角形,这个三角形的面积是( ) (3)2.5 公顷( )平方米 5.3 平方米( )平方米( )平方分米 (4)一个三角形和平行四边形的面积和底相等,三角形的底是 12 厘米,平行四边形的底是( )厘米。 3、计算下列图形的面积(单位:cm)完成二、练习与应用 1、有一块三角形的花圃,底是 25 米,高是 22 米平均每平方米产鲜花 50 枝,这块花 圃一共可以产鲜花多少枝? 2、完成课本第 10 题 3、一个三角形的高是 86 厘米,底是 45 厘米,求这个三角形的面积。 4、量出红领巾的底和高去整理秘书,算出它的面积。三、拓展提高 1、一个直角三角形的面积是 36 平方分米,它的一条直角边是 9 分米,另一条直角边 是多少分米? 2、我是小小设计师,有一块长方形红布料长 1.8 米,宽 0.9 米,用这块面料做成底边长 90 厘米,高 30 厘米的红领巾,最多能做多少个?四、课堂小结: 。 纠 错 栏 梯形面积的计算 、学习内容:第 19 页的例 6 及“试一试”“练一练”练习四 1-3 题。学习目标: 1、通过观察、操作、猜测、填表、讨论等方法探索并掌握梯形面积的计算方法,通过迁移前面学法,自主探究梯形上下底、高与平行四边形的底、高之间的关系,能正确计算梯形的面积,应用公式解决相关的实际问题。 2、培养观察、推理、归纳能力,体会转化思想的价值。 3、进一步积累解决问题的经验,增长新图形面积研究的策略意识,获得成功体验,提高学习自信心。学习重点:探索并掌握梯形的面积计算方法。学习难点:理解梯形推导公式过程中梯形上、下底与平行四边形的底之间的关系。学习准备:剪下书后的梯形学习过程:一、知识回顾: 1、按算式画出相应的图形,说说自己是怎么想的?算式:4×3 4×3÷2 2、复习梯形的有关知识:举一梯形。说说梯形的基本特征及各部分名称。二、探究新知: 1、学习例 6: (1)出示例 6: 用例 6 中提供的梯形拼成平行四边形。(注意:组内所选的梯形都要齐全) (2)小组交流: 你认为拼成一个平行四边形所需要的两个梯形有什么特点? 测量数据计算拼成的平行四边形的面积和一个梯形的面积并填表。 (3)如何计算一个梯形的面积? 从表中可以看出梯形与拼成的平行四边形还有怎样的关系?(小组交流) 得出以下结论: 这两个 的梯形,无论是直角梯形、等腰梯形、还是一般的梯形,都可以拼 成一个 这个平行四边形的底等于 这个平行四边形的高等于 因为 每个梯形的面积等于拼成的平行四边形面积的 所以 梯形的面积= (4)用字母表示梯形面积公式:三、巩固练习: 1、试一试:一块梯形的麦田,上底是 36 米,下底是 54 米,高是 40 米。求这块麦田的面积。 2、完成 P20 练一练 第 1 题 涂色梯形的面积与整个平行四边形的面积有什么关系? 3、完成 P20 练一练 第 2 题: (1)提问:你能准确说出每个图形的上底、下底和高吗? (2)再计算它们的面积。 4、完成 P20 练一练 第 3 题 指一指,图中的物体的“横截面”具体在哪里?再应用公式进行计算。五、课堂小结: 。 纠 错 栏 梯形面积的计算练习课学习内容:梯形面积的巩固练习。学习要求:进一步掌握梯形面积的计算公式,能正确、熟练地计算梯形的面积。学习重点:应用所学的知识解决一.
② 请问什么是学案
本文主要对数学学案的含义和学案的设计原则进行讨论。1 学案的含义</b> 什么叫学案?简言之,学案,就是引导和帮助学生自主学习、探究的方案.在以往的教学中,由于学生已习惯了“老师讲,学生听,老师布置,学生练习”的学习方式,使得学生自主学习、探究的意识与能力比较薄弱,即便是进行某种形式的自主学习、探究,也因为缺乏自主学习、探究的经验和方法而往往流于形式,难以使学习进入到一个较深的层次.而要使学生进行有效的自主学习、探究,并使这种学习进入到更深的层次,就需要一个引导和帮助学生自主学习、探究的具体方案,即学案.学案,是教师在教学理论与学习理论的指导下,在二度消化教材与分析学情的基础上,根据《课程标准》(以下简称《标准》)的要求和学生的认知水平与知识经验,并以学生的学为出发点,把学习的内容、目标、要求和学习方法与探究方法等要素有机地融入到学习过程之中而编写的一个引导和帮助学生自主学习、探究的方案. 二度消化论认为:一个教师对自己所教的内容必须进行二度消化,否则,他的教学就只能是照本宣科。第一度消化是在他自己当学生或搞科研时,针对自己存在的问题,结合自己的特点、条件,对输入的教学信息进行的加工,目的是为了求得自己的理解。而第二度消化则是在他成为教师后,为了使学生或他人获得理解而结合接受者的特点、条件,对即将输出的信息进行的加工【3】。学案中教师对教材的“二度消化”是指教师结合教学的要求和学生的特点、条件,为更好地达到促进学生的学习而对学习的内容作进一步创造性的理解、加工和挖掘。真正有效的学习应是学生的自主学习(肖川),而学生的自主学习是在课前、课中和课后的学习活动之中进行的。学生在自主学习、探究的过程中会遇到许多疑惑和困难,若能及时得到教师或他人的当面指点和帮助,则能大大提高自主学习、探究的质量和效率,而这在实际中又不可能完全实现。学案,就是教师通过对教材的二度消化,把对学生在学习中的将会遇到的困难进行分解以及学习方法与探究方法的指导写入学案之中,这样学生在自主学习、探究遇到困难时就可以根据学案的提示、建议和要求进行学习从而获得对学习内容的一度消化。因此,学案又是帮助学生课前自学、课堂学习、课后复习所使用的主动学习、探究的工具与方案;是教师启发、引导、指导学生学习的工具与方案[4].由此可知,学案不是教学内容的拷贝,也不是教师讲授知识点的简单罗列.它一方面要帮助学生将所学知识与已有的知识经验形成联结,为知识的学习提供适当的附着点,以帮助学生尽快进入“最近发展区”,促进和帮助学生对知识的理解;另一方面,它又提供和指导学生掌握有效的探究、学习的方式方法与学习策略,帮助学生形成良好的学习、探究的习惯,提高学习、探究的能力。因此,学案实质上是教师用以帮助学生掌握教材内容、沟通学与教的桥梁,也是培养学生自主学习、探究能力和建构知识能力的一种重要工具与媒介,是教师主导取向接受学习和学生自主取向的探究式学习的取中和平衡,是教与学的最佳结合点。它具有“导读、导思、导听、导做”的作用。2 学案与教案的区别</b> 从设计的理念、角度和针对性等方面,学案与教案都有一定的区别.学案是以学生的“学”为出发点和归宿,是从学生如何“学”的角度思考和设计学生的学习内容与学习活动,其着眼点在于学生学什么和如何学.学案强调的是学生的“学”,体现的是以学生为中心.学案反映的内容主要是学生的学习目标、学习内容、学习环节以及学生的学习、探究活动过程.而教案则是从教师如何“教”的角度出发进行的教与学的活动设计方案。教案中主要反映的是教师的教学活动过程与教学的环节,其着眼点在于教师讲什么和如何讲,体现的是以教师为中心,强调的是教师的“教”.虽然教案中也有学生的学习活动设计,但表现不够突出,体现不够充分,整体仍然是以教师的“教”为主线.此外,学案与教案还有以下不同点:(1)各自设计时的角度与理念不同,教案为学生提供的是一种接受知识的“跑道”,而学案为学生提供的则是一种自主发展的“通道”.(2)针对性不同.学案主要是针对学生的学习而设计的,而教案主要针对教师的教学而设计的.(3)使用的对象不同.学案的使用对象主要是学生;而教案的使用对象只是教师;(4)体现的学习环节不同.学案,体现了学生学习的完整过程,包括了课前、课中及课后三个学习环节,而教案则主要体现了课堂上师生“教”与“学”的学习环节.3 学案设计的原则</b> 教师对学案的设计,是在二度消化教材和对自己所教学生的认知水平与知识经验进行认真分析的基础上,根据《标准》的要求并结合所学内容,以引导学生的学习、探究,提高学习效率为出发点进行系统的规划与安排。在设计时,教师要认真分析教材和学情,合理地处理教材,并将学法指导有机融入到学习的各个环节中,使学案的运用达到启发和开拓学生思维,提高学生自主学习、探究能力的目的。学案的设计是实施学案教学的前提,学案的质量直接关系到学生学习、探究的质量。为了提高学案的质量,有效发挥学案的作用,学案设计应遵循以下教学原则。3.1 目标性原则 学案设计应紧紧围绕学习目标进行。从教材的理解到练习题的设计和学生的反思小结都应以目标的达成为宗旨。学案,作为引导和帮助学生学习、探究的方案,在学生学习的过程中起着启动、引导和组织的作用。同时,学生在依学案进行学习的过程中也需要有一个评判学习进程与学习质量的指标或标准。因此目标的设立既要能够激发学生的学习需求、明确学习意向,产生一种对学习相关知识内容的期盼,又要能够为学生的自主学习、探究提供一个明确而有效的自我评价(包括过程性评价与结果性评价)的依据或标准。3.2 启发性原则 对教材中学生难以理解的内容,学案设计时应作适当的提示,并配以一定数量的思考问题,以引导学生自主学习、探究。学案是学生学习、探究某课时知识的线路或流程,这一过程中的每一个环节均是在学生自我意识的控制下完成的。从相关知识的复习与组织、概念的形成与理解、结论的发现与证明、方法的探究与概括、知识的反思与评价等,其中许多内容的学习是由学生独自完成的。整体来看,学生依学案进行的学习是一种自主阅读、探究的学习过程。因此,学案要能够为学生的学习提供一个合适的角度或恰当的平台,要有利于激活学生的旧知识,开展丰富的联想,构建较为明晰的个人意义(对新知识的一种个人理解或解释);要有利于学生开展对知识的探究,经历抽象概括、归纳猜想、实验验证、演绎证明等思维过程,积累相应的基本活动经验,从而“让每个学生都会用自己内心的体验和主动参与去学习数学。”3.3 渐进性原则 学案中问题的设计应有一定的层次和梯度,应根据学生对问题的认识逐渐加深,做到循序渐进,以引导学生逐渐走向深入。首先,学案体现了学生学习的一个相对完整的过程,完成了一个学案中的内容,就完成了一个学习循环周期:课前——课中——课后。在课前的学习主要是一种准备性的学习,对一般学生而言,在这一阶段所获得的知识中有诸多的感性经验成分,所达到的是“最近发展区”的前端水平;在课堂上所进行的主要是一种师生互动的学习,所获得的知识中以理性成分居多,所达到的是“最近发展区”的后端水平;在课后的学习中,通过反思、应用、拓展等学习活动,使所学知识更加明晰、准确和稳定,并且具有一定的思辩性和延展性,使学习进入到“后发展区”的水平。从思维的角度讲,在学案学习中,学生经历了感性思维——理性思维——辨证思维的过程。其次,“问题是数学的心脏”。一个好的数学学案应该体现“问题驱动”的教学原理,以问题作为学生学习、探究的导向与学习、探究进程的标志,并注意学生知识和思维的层次性,并且,所提出的问题应既具有铺垫性又具有发展性,使得问题之间环环相扣,步步深入。3.4 挑战性原则 学案设计时,所设计的问题要有一定的挑战性,以引导学生去深入地研读教材,开展探究性学习,培养学生的归纳发现能力。要使学生意识到,要解决学案中设计的问题,不看书不行,看书不细致也不行,光看书不思考不行,思考不深不透也不行。首先,所提出的问题要能够激发学生的好奇心,能够激起探究的欲望。在问题的叙述形式上要简明、生动、新颖;在内容上要有价值,要围绕教学的重难点,能够较好地体现数学的科学、应用、文化、美学等方面的价值。其次,提出的问题要有一定的开放性,要有利于培养学生的问题意识、探究意识和创新意识。在思维能力上,能够使归纳思维与演绎思维和谐发展。再次,问题的难度要适中,相对于学生而言要具有潜在的心理意义,使多数学生在通过一定的思考与探究后能够获得答案或发现结论。3.5 指导性原则 由于学案是“引导”和“帮助”学生自主学习、探究的方案,是连接“教”与“学”的最佳结合点,是教师主导与学生主体的和谐统一。因此,学案在重视和强调学生自主学习、探究的同时,也要充分体现教师的主导作用,这种主导作用主要体现在学案中对学生学习、探究的指导上。一个好的学案应该能够给学生以动机上的诱导、知识上的疏导、思想上的引导、探究上的辅导以及学法上的指导。由于利用学案的目的是要学生真正“学会学习”、“学会探究”,因此,学法的指导就是学案的核心内容。所以,在学案设计时,要把教师对学生的学法指导融入到每节课具体的学习内容之中。如,阅读教材时如何手脑并用,如何查阅资料,到哪里去查阅资料,如何归类整理,如何总结提炼等都应在学案中明确指出。而且有关学习的前期准备也应做出交代,如,学习该部分知识应先复习那些知识,应准备那些工具等。3.6 评价性原则 学生在学案的引导下进行学习,其效果如何需要及时的予以评价,而且对有些学习内容的真正理解是在相互评价中完成的。同时,学生学习兴趣与积极性的激发、调动与保持也需要评价予以保障。因此,学案的设计要把评价有机地融入到学生学习的过程之中,特别是把评价看作是学生认知活动的有机组成部分。评价是保证和提高认知活动有效性的心理过程,这种有效性主要体现以下三个方面:其一,评价使得学生所建立的关于知识的个人意义经受了某种检验而变得更加清晰、明确、合理;其二,学生在对他人的讲解进行分析评判时,要用自己的语言说出个人的看法和观点,就需要对知识的个人意义进行加工、改组、归纳、概括,从而促进和丰富了学生对知识的心理表象,提高了知识内化的效率;其三,通过评价,可使学生认识到所学知识的重要性,体会到在应用中的有效性,感受和欣赏到数学那特有的内在美,从而使他们对知识产生一种向往的感觉经验。第四,通过自我评价, 不断反思调节自己的学习策略与方法,不断的丰富和积累数学活动经验。
以上几个原则相互联系,互相依存,它们一起构筑成一个和谐的整体。在具体设计学案的过程中,要综合运用这几个原则,才能有效提高学案设计的质量。4 学案设计的内容</b> 根据学案的含义,学案应含有学习内容、目标、要求和学习方法,还应有为学生提供有利于理解学习内容的材料以及引导学生学习的路线与环节。一份完整的学案应包含以下内容与栏目:学习课题、内容分析、学习目标、学习重难点、学法指导、学习过程、达标测评与资源连接。4.1 内容分析 这里要求主要分析所学内容在学科中的地位与作用;与前后知识的内在联系;高考、中考的考试要求与考察方式方法;重点、难点、易混点和易错点等学习注意事项。根据格式塔心理学的观点,人对事物的认识一般总是从整体开始的。当学生对所学内容得到了整体性的第一印象后,认知结构中已有的观念就能与这个整体性的介绍发生关系,建立起进一步吸收具体知识的框架。【5】“内容分析”就是对知识的整体背景、发生时的关联或演绎框架做一概括性说明,让学生对所学部分在大范围中的地位和各部分之间的一些联系有一定程度的初步了解,使他们能基本明了所学的这一部分内容的前因后果和注意事项,这样他们要求掌握知识整体的内在动机就更强烈,更有针对性。
4.2 学习过程 学习过程包括“学习准备、阅读探究、质疑提问、练习巩固、反思拓展”五个方面。教师对学生的学法指导和学生学习过程中的质疑提问不作为一个栏目单独列出,而是结合学习内容有机地融入到学习过程之中。如对学法指导的具体设计可用“提示”、“建议”、“注意”、“要求”等指导语,把教师对学生的学习要求与建议、学法指导融入具体的学习内容之中,以引导学生自主学习。4.2.1 学习准备 学习的关键在于对知识的理解,而理解的本质是建立新旧知识的内在联系,将新知纳入到原有的认知结构之中【5】。而要使新旧知识相互作用,建立联系,前提就是要有相应的基础图式。学案中的“学习准备”就是为学生在学习新知前建构好一定的心理基础,组建好相应的基础图式,为学习新知作好铺垫。学习准备包括知识准备、工具准备和情绪准备。知识准备主要是学习本节内容应具有的知识储备。学案中可以用提问、题组练习和建议等方式指导学生去进行自查、复习,为学习新知扫清知识上的障碍,起到“先行组织者”的作用。情绪准备就是创设学习情境,激发学生的学习兴趣,使学生产生学习的欲望和心向,为学习新知作好情绪状态上的准备。学习的欲望和心向是属于学习的动力部分,情绪准备的作用就是激发学生学习的内驱力,使学生产生阅读自学的好奇心和学习欲望。例如,平方公式第一节的“学习准备”可设计为:“①学习本节内容需要熟悉‘多项式乘多项式’、‘幂的乘方’和‘积的乘方’的运算法则,学习前可先检查自己是否熟悉这几个法则;②同学们在利用多项式乘法方则进行多项式乘多项式的运算时,是否感到有些繁琐?是否渴望有一个公式能很快得出运算结果?学完本节内容后你的这一愿望就会如愿以赏了!”其中的第一条为知识准备,主要目的是扫清学习平方差公式的知识障碍;第二条为情绪准备,设计时要设身处地的为学生着想,并从学生期盼有一个简洁的公式这一心理需求为切入点提出问题,以激发学生的学习兴趣和学习欲望。4.2.2阅读探究 教材的阅读探究分为解读教材和挖掘教材两部分。 第一,解读教材(读懂教材)。这是指学生在学案的引导下,自己去读懂教材,包括对概念和公式定理所涉及的有关名词的涵义以及本身所表述内容的理解。我们知道,学生所学的知识主要是书本知识,即教材中的文本知识。教材表述的文本知识具有简练性、抽象性和较强的逻辑性,学生不易读懂,这就需要对教材进行解读。这种解读表现在学案中就是把学生不易读懂或把握不准的内容通过教师解读后,分解为一个个便于学生理解与接受的小问题,再用解释、提问或填空的形式在学案中反映出来,或者指出需要查阅的相关参考资料,以引导学生去阅读教材,达到对教材知识内容意义的理解,这时的学习属于有意义的接受学习的范畴。在具体进行学案设计时,要把指导学生如何去阅读教材的方法设计进去,以指导学生有效阅读理解教材。 第二,挖掘教材(读透教材)。这是指学生在学案的引导下自己去探索、发掘、归纳教材知识内容背后隐藏的数学思想、方法和规律,从而读透教材。这时的学习属于自主探究学习的范畴。 由于学生学习的内容主要来自于教材,而要深入地理解和掌握所学内容,就必须深入挖掘教材。挖掘教材的内容为:(1)知识的本质特征。如,概念的内涵与外延;公式、定理、法则成立的条件、特征和适应的范围;(2)知识的来龙去脉和内在的联系;(3)知识的潜在价值与功能;(4)例、习题的作用与价值;(5)知识中隐藏的数学思想、方法和规律等。 以前的教学,一般都是教师对教材进行挖掘和处理后再完整的传输给学生,学生的学习方式就是“听讲解――记笔记——做作业”,学生完全处于被动接受的状态。这种教学虽然学生也有一些思考,但思考的时间位于教师讲解之后,部分能够自己独立解决的问题由教师代劳了,使得学生的自主探究既不充分也不深入,从而影响了学生探究能力的培养。我们这里所说的挖掘教材,是指教师挖掘后再以问题串或填空的形式写在学案中,引导学生自己去挖掘,从而把学生思考的时间置于教师的讲解之前。学生根据教师提出的问题,自己独立地去思考、挖掘教材的内容进行解答,课堂上再通过师生的交流讨论最后达到对所学内容深刻地理解与掌握。这样,不但可以使学生深入理解教材,而且还可以培养学生的阅读理解能力和探索发现能力。4.2.3 质疑提问 学生在依照学案进行学习时会产生许多在学案的提示下自己仍然不能解决的疑问;在学习的过程中还会对某些问题产生联想和猜想;对某些问题进行的质疑等,这些均是培养学生问题意识和创新能力的有效教学资源。因此,学案应要求学生把自学中的疑问、质疑、联想和猜想作好记录,让学生带着问题走入课堂。这样做的好处是:(1)可以使学生上课的注意力集中到未解决的问题上,使上课更具有目的性和针对性;(2)可以培养学生的问题意识与创新意识,提高他们发现问题、提出问题、分析问题和解决问题的能力;(3)能使学生逐步养成良好的自学习惯,掌握正确的自学方法。具体设计时质疑提问不作为一个单独的栏目,而是要求学生在具体产生问题时随即记下,以备课堂上讨论时提出与交流。4.2.4 练习巩固 在学生自学教材后,可指导学生尝试解答课本习题,一则巩固消化学习的知识;二则检验自学的效果;三则发现存在的问题。同时还要设计一些不同层次的变式练习,以达到巩固新知、形成技能和培养迁移能力的目的。4.2.5 反思拓展 反思是学习的重要环节。反思的主要内容可分为三个方面:一是反思自己学习中的得与失,调节自己的学习策略与方法;二是反思所学内容与其它知识和本身的内在联系,建构知识网络,完善认知结构;三是反思某些数学问题解决的过程与方法,积累数学活动经验。同时,在反思的基础上对某些知识进行进一步的引申与拓展,把学习内容和活动从课内延伸到课后。4.3 达标测评 在一节内容学习完后,再根据本节内容设计一套检测题,用于学生自学测评和发现问题,也便于教师及时反馈了解学生的学习效果,有利于教师的教学。4.4 资源链接 结合学习内容提供和介绍相关的学习材料,以引导学生课后去查阅和阅读。通过着名数学应用案例的评析、数学技术的介绍、网络资源的链接、学生优秀数学应用成果的展示等,开阔学生应用数学的视野,认识数学的应用价值,激发应用数学的兴趣和愿望。这样既可以提高学生的阅读兴趣和养成数学阅读的习惯,还可以孕育他们应用数学的意识。 以上栏目和内容是数学学案的一般要求,在进行具体内容的学案设计时,可以作些适当的调整。如,根据解题学习课的特点和要求将以上栏目作适当调整后可得解题学习课学案栏目为:学习课题、学习目标、学习重点、学习过程(学习准备、典型例析、变式练习、反思拓展)、达标测评、课后作业、资源连接;根据复习课的特点和教学要求,将一般学案的栏目做些适当调整可得复习课的学案栏目为:学习课题、内容分析(地位作用,相互联系、考试要求等)、学习目标、学习重点、学习过程(学习准备、知识结构(框架结构,作必要的提示)、知识点整理、典型例析、变式练习、反思拓展)、达标测评、资源连接。 设计学案的主要目的是为了发挥学案的功能,提高教与学的效率,而运用学案进行教学的主要环节是“导学”、“讲解”和“评价”,这种教学模式我们称为“导学讲评式教学”,限于篇幅笔者讲另文阐述。
③ 小学三年级数学小树有多少棵的学案
单元
第一单元———乘除法
课
题
小树有多少棵
教学内容
课本第2——3页
教学目标
1、知识与技能:探索并掌握整十、整百、整千数乘一位数的口算方法,并能正确地进行口算。
2、过程与方法:结合具体情境,在讨论解决实际问题的过程中,培养学生提出问题和解决问题的意识和能力。
3、情感、态度与价值观:进一步感受数学与生活的联系。
教学重难点
教学重点:
理解并掌握整十、整百、整千数乘一位数的口算方法。
教学难点:
掌握整十、整百、整千数乘一位数的口算方法。
教学过程
一、复习。
1、口算。
7×8 = 9×6 = 6×5 = 8×5 = 4×6 =
2、70、100里面有多少个十?500、2000各有多少个百?4000里面有多少个千?
3、4个十、11个十是多少?5个百、13个百是多少?6个千是多少?
(复习数的组成,为口算乘法做准备。)
二、新授。
1、创设情境,提出问题。
(1)引导学生先观察主题图,理解图意,明确一共有几捆树,每捆有多少棵。
(2)引导学生提出问题:如“小树一共有多少棵?”
(3)学生独立列出算式,并解答。
(4)小组交流。
2、探索口算方法。
(1)20×3 =60中的“20”表示每捆有20棵,“3”表示有3捆,“60”表示有60棵小树。
(2)20+20+20=20×3=60(可以用学具摆一摆)
(3)3个20棵就是6个10棵,等于60棵。
(4)因为2×3=6,所以20×3=60。
(5)还可以理解成再写上一个“0”就可以得到计算结果。
3、小结。
20×3表示的意义与我们学过的表内乘法的意义相同,也就是求几个相同加数的和的简便运算。
4、找规律。(发现了什么?)
2×3=6
20×3=60
200×3=600 (2个百乘以3是6个百,是600)
2000×3=6000(2个千乘以3是6个千,是6000)
师:刚才我们研究的算式有什么特点?(这些算式都是一位数乘整十、整百、整千数)
师:你有什么好方法?(一位数乘整十、整百、整千数,可以先用乘法口诀算出乘数和被乘数零前面的数相乘的积,再看被乘数末尾有几个零,就在积的末尾添几个零。)
思路:提出问题 → 算法多样化 → 建立数学模型 → 摆学具 → 讨论算式的表示方法 → 类比推理。
三、试一试。
四、练一练。
看图解决实际问题。
(1)让学生理解图意,说说情境表达的意思,明确有几堆香蕉,每堆香蕉有几根,大象和小象每天各吃几根。
(2)解决问题。先让学生独立思考,尝试解决问题,再交流。
方法一:60×3=180(根),再计算200-180=20(根),说明够吃一天。
方法二:60×3=180(根),再比较大小,因为180根比200根少,所以够吃一天。
(3)解决问题(2),先找出“一个星期有7天”这个条件。
(4)解决问题(3),因为培养学生提出问题的能力十分重要,所以要从不同的角度提出问题。
问题一:一共有多少根香蕉?
问题二:一头大象和一头小象每天吃多少根香蕉?
问题三:它们3天吃多少根香蕉?
………………
五、数学游戏。
通过生动活泼的数学游戏,激发学生的学习兴趣,巩固整十数乘一位数的口算。
六、作业。
板书设计
小树有多少棵
小树每捆20棵,有三捆,一共有多少棵?
20×3=60(棵)
答:一共有60棵。
教学后记