Ⅰ 小学数学中有哪些问题是比较典型的难题
找规律的题,还有求面积,体积,变个方法,找个稀奇古怪的形状,只要你能拼接,会计算,细心就好了..
相遇,相向问题.
浓度题.
Ⅱ 六年级数学必考难题整理
我为大家整理了六年级的一些难题,大家跟随我来看一下吧。
1.王师傅用面积是9.42平方分米的铁皮做成了一个长2分米的烟囱(接头处忽略不计)则,这个烟囱的横截面的直径是多少?
解:横截面的周长:9.42/2=4.71(分米)
横截面的直径:4.71/3.14=1.5(分米)
答:这个烟囱的横截面的直径是1.5分米。
2.只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____。
解:逆向思考:因为225=25×9,且25和9互质,所以,只要修改后的数能分别被25和9整除,这个数就能被225整除。我们来分别考察能被25和9整除的情形。由能被25整除的数的特征(末两位数能被25整除)知,修改后的六位数的末两位数可能是25,或75。再据能被9整除的数的特征(各位上的数字之和能被9整除)检验,得9+7+0+4+5=25,25+2=27,25+7=32。故知,修改后的六位数是970425。
3.车队向灾区运送一批救灾物资,去时每小时行80km,5小时到达灾区。回来时每小时行100km,这支车队要多长时间能够返回出发地?
解:80×5÷100=400÷100=4(小时)
答:这支车队要四个小时能够返回出发地。
以上是我整理的小学六年级的数学题,希望对大家有所帮助。
Ⅲ 小学生数学考试,常遇问题有哪些
在每一次考试前一直看中多有关考试技巧的书,但是到考试时,内心一慌,许多考试技巧都忘记了,只有使足气力一道题、一道题的往后面做。
依照自身归纳的答题次序:先做这些即便增加答题时间,也不一定会评分大量的题目,后做这些必须细心考虑和琢磨的题目。比如,数学课先做会做的题目,再做难点,说白了难点,便是你思索了十多分钟依然没法进行的题目。再比如,英文和语文课,你能先把填词语、挑选、写作等题目做完,随后再做阅读文章题目。
小学数学教学考试常遇难题有什么是由大家用心为我们提前准备的,期待能帮助您更快的饰演好家庭老师的人物角色!
Ⅳ 有哪些三年级数学难题
第一大题填空当中,铅笔长200?这道小题很容易困惑学生,填入的厘米答案是错的,应该填入毫米才对。但老师的身高单位填了千米,真的就是闹了笑话了!还有第2小题的倍数,也容易误导小学生,上面的答案就是错误的,桌子数应当是6张才对!
第三道难题,出现在了压轴题的第4小题中:一本童话书有96页,星星看了这本书的八分之五,还剩下几分之几没有看?还剩下多少页没有看?
第一个问题好解决,用单位1减去八分之五等于八分之三。
难点在于,剩下的八分之三,究竟是多少页?而且,三年级同学,还没有学过两位数除法,因此,这道题有些超范围。按照老师以往所讲的方法,需要先拿96除以8,将之平均分!但是96除以8学生没有学过,因此,这道数学题,就要看小同学的灵活变通能力了,结果,还是有相当多一部分学生解答出来了!
朋友,您家如果有三年级小学生的话,可以试着做一做这张试卷哦,看他的数学,能考多少分呢?
Ⅳ 小学数学难题大全
小学数学公式大全一、小学数学几何形体周长 面积 体积计算公式长方形的周长=(长+宽)×2 C=(a+b)×2 正方形的周长=边长×4 C=4a 长方形的面积=长×宽 S=ab 正方形的面积=边长×边长 S=a.a= a 三角形的面积=底×高÷2 S=ah÷2 平行四边形的面积=底×高 S=ah 梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 直径=半径×2 d=2r 半径=直径÷2 r= d÷2 圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 圆的面积=圆周率×半径×半径三角形的面积=底×高÷2。 公式 S= a×h÷2 正方形的面积=边长×边长 公式 S= a×a 长方形的面积=长×宽 公式 S= a×b 平行四边形的面积=底×高 公式 S= a×h 梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2 内角和:三角形的内角和=180度。长方体的体积=长×宽×高 公式:V=abh 长方体(或正方体)的体积=底面积×高 公式:V=abh 正方体的体积=棱长×棱长×棱长 公式:V=aaa 圆的周长=直径×π 公式:L=πd=2πr 圆的面积=半径×半径×π 公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积=1/3底面×积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。分数的乘法则:用分子的积做分子,用分母的积做分母。分数的除法则:除以一个数等于乘以这个数的倒数。二、单位换算(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米(4)1吨=1000千克 1千克= 1000克= 1公斤 = 2市斤(5)1公顷=10000平方米 1亩=666.666平方米(6)1升=1立方分米=1000毫升 1毫升=1立方厘米(7)1元=10角1角=10分1元=100分(8)1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒三、数量关系计算公式方面 1、每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数 2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数 7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数×因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数四、算术方面 1.加法交换律:两数相加交换加数的位置,和不变。 2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3.乘法交换律:两数相乘,交换因数的位置,积不变。 4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。 6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。 7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8.方程式:含有未知数的等式叫方程式。 9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。 10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15.分数除以整数(0除外),等于分数乘以这个整数的倒数。 16.真分数:分子比分母小的分数叫做真分数。 17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。 18.带分数:把假分数写成整数和真分数的形式,叫做带分数。 19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 20.一个数除以分数,等于这个数乘以分数的倒数。 21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。五、特殊问题和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数 (或者 和-小数=大数) 差倍问题差÷(倍数-1)=小数小数×倍数=大数 (或 小数+差=大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: (1)如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) (2)如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数(3)如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题(1)一般公式: 顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 (2)两船相向航行的公式: 甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度 (3)两船同向航行的公式: 后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间税后利息=本金×利率×时间×(1-5%) 工程问题 (1)一般公式: 工作效率×工作时间=工作总量 工作总量÷工作时间=工作效率 工作总量÷工作效率=工作时间 (2)用假设工作总量为“1”的方法解工程问题的公式: 1÷工作时间=单位时间内完成工作总量的几分之几 1÷单位时间能完成的几分之几=工作时间
Ⅵ 小学数学比较难的题目
小学数学比较难的题目及例题
1.
路程问题(相遇)
【口诀】:相遇那一刻,路程全走过。除以速度和,就把时间得。
举例:甲乙两人从相距120千米的两地相向而行,甲的速度为40千米/小时,乙的速度为20千米/小时,多少时间相遇?
相遇那一刻,路程全走过。即甲乙走过的路程和恰好是两地的距离120千米。除以速度和,就把时间得。即甲乙两人的总速度为两人的速度之和40+20=60(千米/小时),所以相遇的时间就为120÷60=2(小时)
2.
路程问题(追及)
【口诀】:慢鸟要先飞,快的随后追。先走的路程,除以速度差,时间就求对。
举例:姐弟二人从家里去镇上,姐姐步行速度为3千米/小时,先走2小时后,弟弟骑自行车出发速度6千米/小时,几时追上?
先走的路程,为3×2=6(千米)速度的差,为6-3=3(千米/小时)。所以追上的时间为:6÷3=2(小时)
3.
鸡兔同笼问题
【口诀】:假设全是鸡,假设全是兔。多了几只脚,少了几只足?除以脚的差,便是鸡兔数。
举例:鸡免同笼,有头36 ,有脚120,求鸡兔数。求兔时,假设全是鸡,则免子数=(120-36×2)÷(4-2)=24求鸡时,假设全是兔,则鸡数 =(4×36-120)÷(4-2)=12
4.
和差问题
已知两数的和与差,求这两个数。【口诀】:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。
举例:已知两数和是10,差是2,求这两个数。按口诀,大数=(10+2)÷2=6,小数=(10-2)÷2=4
5.
浓度问题(加水稀释)
【口诀】:加水先求糖,糖完求糖水。糖水减糖水,便是加水量。
举例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20×15%=3(千克)
糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3÷10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)