㈠ 小学数学中常用的数学思想方法有哪些
小学数学常用的教学方法有六种,分别是:
讲授法、谈话法、讨论法、练习法、演示法、动手操作法、启发法
1、讲授法
讲授法是教师运用口头语言向学生描绘情境、叙述事实、解释概念、论证原理和阐明规律的一种教学方法。
2、谈话法
谈话法又称回答法,它是通过师生的交谈来传播和学习知识的一种方法。其特点是教师引导学生运用已有的经验和知识回答教师提出的问题,借以获得新知识或巩固、检查已学的知识。
3、演示法
演示法是教师把实物或实物的模象展示给学生观察,或通过示范性的实验,通过现代教学手段,使学生获得知识更新的一种教学方法。它是辅助的教学方法,经常与讲授、谈话、讨论等方法配合一起使用。
4、练习法
练习法是在教师指导下学生巩固知识和培养各种学习技能的基本方法,也是学生学习过程中的一种主要的实践活动。
5、课堂讨论法
讨论法是在教师指导下,由全班或小组围绕某一种中心问题通过发表各自意见和看法,共同研讨,相互启发,集思广益地进行学习的一种方法。
6、动手操作法
动手操作法是学生在教师的指导下,使用一定的设备和材料,通过操作,引起实验对象的某些变化,并从观察这些变化中获得新知识或验证知识的一种教学方法,它也是自然科学学科常用的一种方法。
7、启发法
启发教学可以由一问一答、一讲一练的形式来体现;也可以通过教师的生动讲述使学生产生联想,留下深刻印象而实现。所以说,启发性是一种对各种教学方法和教学活动都具有的指导意义的教学思想,启发式教学法就是贯彻启发性教学思想的教学法。也就是说,无论什么教学方法,只要是贯彻了启发教学思想的,都是启发式教学法,反之,就不是启发式教学法。
㈡ 一般的数学思想方法有哪些
1 函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。
2 数形结合思想
把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答。
3 整体思想
整体代入、叠加叠乘处理、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用。
4 转化思想
在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题。
5 类比思想
把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么推断它们在其他方面也可能有相同或类似之处。
(2)小学数学基本思想或方法有哪些扩展阅读:
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。
笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。
函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。
它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。
在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。
我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系。
实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。
引起分类讨论的原因主要是以下几个方面:
① 问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。
② 问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。
③ 解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。
另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。
进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。
解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。
㈢ 小学数学学习方法有哪些
数学作为一门具有很强逻辑性和连续性的学科,是每个小学生都应该掌握的基础知识.小学数学重点是基础知识的掌握基和学习,学习数学的标准就是能够对该学籍范围内的题目进行正确的解答.考察公式概念是小学数学重点要掌握的知识,下面这几个学习方法带你学好数学.
(同学们开讲)
学习小学数学重点就是注重学习的方法,但是也需要学生有坚持不懈的精神.勤学多问不耻下问是学习的良好态度,他们会把你带到一个更高的层次,掌握好学习方法,你会对每一天的新知识充满兴趣.
㈣ 小学数学思想方法有哪些
1、符号化思想方法:指用符号化的语言包括字母、数字、图形和各种特定的符号来描述数学内容的思想方法。
2、类比思想方法 :指依据两类数学对象的相似性,将已知的一类数学对象的性质迁移到另一类数学对象上去的思想方法,如加法交换律和乘法交换律。
3、转化思想方法 :指由一种形式变换成另一种形式的思想方法,如公式的变形等。
4、数形结合思想方法:数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形可使之直观化、形象化、简单化;另一方面复杂的形体可以用简单的数量关系表示。
5、分类思想方法;指按照一定的分类标准,对数学对象进行分类的思想方法,如自然数的分类。
㈤ 小学数学四大思想八大方法是什么
小学数学四大思想数形结合、等价变换、数学归纳法、反证法,八大方法是逆向思维方法、假设思维方法、消元思维方法、转化思维方法、对应思维方法、联想思维方法、发散思维方法、量不变思维方法。
小学数学的重要性
数学具有指导生活的作用数学从表面上看是一门严肃严谨的学科,但其实数学影响着我们日常生活的方方面面。我们从一出生到耋耄之年,一直就没有离开过数学,或者说我们根本无法离开数学。
数学一直在潜移默化地在细微之处影响着我们的生活,并且我们在小学时代逐渐形成的数学思维会一直影响我们今后的学习生活,让我们生活得更加精致幸福。
㈥ 小学阶段所涉及到的数学思想方法有哪些
1.符号思想
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学的内容,这就是符号思想。符号思想是将复杂的文字叙述用简洁明了的字母公式表示出来,便于记忆,便于运用。把客观存在的事物和现象及它们相互之间的关系抽象概括为数学符号和公式,有一个从具体到表象再抽象的过程。在数学中各种量的关系,量的变化以及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式来表达大量的信息。
2.化归思想
化归思想是数学中最普遍使用的一种思想方法,其基本思想是:把甲问题的求解,化归为乙问题的求解,然后通过乙问题的解反向去获得甲问题的解。它的基本原则是:化难为易,化生为熟,化繁为简。
3.转换思想
转换思想是一种解决数学问题的重要策略,是由一种形式变换成另一种形式的思想方法。对问题进行转换时,既可转换已知条件,也可转换问题的结论。用转换思想来解决数学问题,转换仅是第一步,第二步要对转换后的问题进行求解,第三步要将转换后问题的解答反演成问题的解答。
4.类比思想
数学上的类比思想是指依据两类数学对象的相似性,将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁,从而可以激发起学生的创造力。
㈦ 数学思想方法有哪些
问题一:常见的数学思想有哪些? 所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且常历史地发展着的。通过数学思想的培养,数学的能力能才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓。
1.函数思想:
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法。
2.数形结合思想:
“数无形,少直观,形无数,难入微”,利用“数形结合”可使所要研究的问题化难为易,化繁为简。把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答,这种方法在解析几何里最常用。例如求根号((a-1)^2+(b-1)^2)+根号(a^2+(b-1)^2)+根号((a-1)^2+b^2)+根号(a^2+b^2)的最小值,就可以把它放在坐标系中,把它转化成一个点到(0,1)、(1,0)、(0,0)、(1,1)四点的距离,就可以求出它的最小值。
3.分类讨论思想:
当一个问题因为某种量的情况不同而有可能引起问题的结果不同时,需要对这个量的各种情况进行分类讨论。比如解不等式|a-1|>4的时候,就要讨论a的取值情况。
4.方程思想:
当一个问题可能与某个方程建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。例如证明柯西不等式的时候,就可以把柯西不等式转化成一个二次方程的判别式。
5.整体思想:
从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用,整体代入、叠加叠乘处理、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用。
6.转化思想:
在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题。三角函数,几何变换,因式分解,解析几何,微积分,乃至古代数学的尺规作等数学理论无不渗透着转化的思想。常见的转化方式有:一般 特殊转化,等价转化,复杂 简单转化,数形转化,构造转化,联想转化,类比转化等。
7.隐含条件思想:
没有明文表述出来,但是根据已有的明文表述可以推断出来的条件,或者是没有明文表述,但是该条件是一个常规或者真理。
8.类比思想:
把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。
9.建模思想:
为了描述一个实际现象更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
10.化归思想:
化归思想就是化未知为已知,化繁为简,化难为易.如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等.实现这种转化的方法有:待定系数法,配方法,整体代人法以及化动为静,由抽象到具体等转化思想
11.归纳推理思想:
由某类事物的部分对象具有某些特......>>
问题二:数学解题思想方法有哪些 数学解题思想方法有哪些
一.数学思想方法总论
高中数学一线牵,代数几何两珠连;
三个基本记心间,四种能力非等闲.
常规五法天天练,策略六项时时变,
精研数学七思想,诱思导学乐无边.
一 线:函数一条主线(贯穿教材始终)
二 珠:代数、几何珠联璧合(注重知识交汇)
三 基:方法(熟) 知识(牢) 技能(巧)
四能力:概念运算(准确)、逻辑推理(严谨)、
空间想象(丰富)、分解问题(灵活)
五 法:换元法、配方法、待定系数法、分析法、归纳法.
六策略:以简驭繁,正难则反,以退为进,化异为同,移花接木,以静思动.
七思想:函数方程最重要,分类整合常用到,
数形结合千般好,化归转化离不了;
有限自将无限描,或然终被必然表,
特殊一般多辨证,知识交汇步步高.
二.数学知识方法分论:
*** 与逻辑
*** 逻辑互表里,子交并补归全集.
对错难知开语句,是非分明即命题;
纵横交错原否逆,充分必要四关系.
真非假时假非真,或真且假运算奇.
函数与数列
数列函数子母胎,等差等比自成排.
数列求和几多法?通项递推思路开;
变量分离无好坏,函数复合有内外.
同增异减定单调,区间挖隐最值来.
三角函数
三角定义比值生,弧度互化实数融;
同角三类善诱导,和差倍半巧变通.
解前若能三平衡,解后便有一脉承;
角值计算大化小,弦切相逢异化同.
方程与不等式
函数方程不等根,常使参数范围生;
一正二定三相等,均值定理最值成.
参数不定比大小,两式不同三法证;
等与不等无绝对,变量分离方有恒.
解析几何
联立方程解交点,设而不求巧判别;
韦达定理表弦长,斜率转化过中点.
选参建模求轨迹,曲线对称找距离;
动点相关归定义,动中求静助解析.
立体几何
多点共线两面交,多线共面一法巧;
空间三垂优弦大,球面两点劣弧小.
线线关系线面找,面面成角线线表;
等积转化连射影,能割善补架通桥.
排列与组合
分步则乘分类加,欲邻需捆欲隔插;
有序则排无序组,正难则反排除它.
元素重复连乘法,特元特位你先拿;
平均分组阶乘除,多元少位我当家.
二项式定理
二项乘方知多少,万里源头通项找;
展开三定项指系,组合系数杨辉角.
整除证明底变妙,二项求和特值巧;
两端对称谁最大?主峰一览众山小.
概率与统计
概率统计同根生,随机发生等可能;
互斥事件一枝秀,相互独立同时争.
样本总体抽样审,独立重复二项分;
随机变量分布列,期望方差论伪真.
问题三:小学数学里有哪些基本的数学思想方法 1、对应思想方法
对应是人们对两个 *** 因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。
2、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。
3、比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。
4、符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。
5、类比思想方法
类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。
6、转化思想方法
转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。
7、分类思想方法
分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。
8、 *** 思想方法
*** 思想就是运用 *** 的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗透 *** 思想。在讲述公约数和公倍数时采用了交集的思想方法。
9、数形结合思想方法
数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。
10、统计思想方法:
小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。
11、极限思想方法:
事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。在讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。
12、代换思想方法:
他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。如学校买了4张桌子和9把椅子,共用去504元,一张桌子和3把椅子的价钱正好相等,桌子和椅子的单价各是多少?
13、可逆思想方法:
它是逻辑思维中的基本思想,当顺向思维难于解答时,可以从条件或问题思维寻求解题思路的方法,有时可以借线段图逆推。如一辆汽车从甲地开往乙地,第一小时行了全程的......>>
问题四:一般的数学思想方法有哪些? 小学数学思想方法有哪些?
1
、对应思想方法
对应是人们对两个 *** 因素之间的联系的一种思想方法,
小学数学一般
是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)
与表示具体的数是一一对应。
2
、假设思想方法
假设是先对题目中的已知条件或问题作出某种假设,
然后按照题中的已
知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确
答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可
以使要解决的问题更形象、具体,从而丰富解题思路。
3
、比较思想方法
比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手
段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量
变化前后的情况,可以帮助学生较快地找到解题途径。
4
、符号化思想方法
用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数
学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量
之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表
达大量的信息。如定律、公式、等。
5
、类比思想方法
类比思想是指依据两类数学对象的相似性,
有可能将已知的一类数学对
象的性质迁移到另一类数学对象上去的思想。
如加法交换律和乘法交换
小学各年级课件教案习题汇总
一年级二年级三年级四年级五年级
律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比
思想不仅使数学知识容易理解,
而且使公式的记忆变得顺水推舟的自然
和简洁。
6
、转化思想方法
转化思想是由一种形式变换成另一种形式的思想方法,
而其本身的大小
是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在
计算中也常用到甲÷乙
=
甲×
1/
乙。
7
、分类思想方法
分类思想方法不是数学独有的方法,
数学的分类思想方法体现对数学对
象的分类及其分类的标准。如自然数的分类,若按能否被
2
整除分奇数
和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以
按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。
对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知
识的分类有助于学生对知识的梳理和建构。
8
、 *** 思想方法
*** 思想就是运用 *** 的概念、逻辑语言、运算、图形等来解决数学问
题或非纯数学问题的思想方法。小学采用直观手段,利用图形和实物渗
透 *** 思想。在讲述公约数和公倍数时采用了交集的思想方法。
9
、数形结合思想方法
数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面
抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简
单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中
常常借助线段图的直观帮助分析数量关系。
10
、统计思想方法:
小学数学中的统计图表是一些基本的统计方法,
求平均数应用题是体现
出数据处理的思想方法。
11
、极限思想方法:
事物是从量变到质变的,
极限方法的实质正是通过量变的无限过程达到
质变。在讲“圆的面积和周长”时,
“化圆为方”
“化曲为直”的极限分
割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学
生掌握公式还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。
12
、代换思想方法:
他是方程解法的重要原理,解题时可将某个条件用别的条件进行代换。
如学校买了
4
张桌子和
9
把椅子,共用去
504
元,一张桌子和
3
把椅子
的价钱正好相等,桌子......>>
问题五:数学常用思想方法有哪些 一、用字母表示数的思想
这是基本的数学思想之一 .在代数第一册第二章“代数初步知识”中,主要体现了这种思想。
例如: 设甲数为a,乙数为b,用代数式表示:(1)甲乙两数的和的2倍:2(a+b)(2)甲数的2倍与乙数的5倍差:2a-5b
二、数形结合的思想
“数形结合”是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国着名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括.数学教材中下列内容体现了这种思想。
1、数轴上的点与实数的一一对应的关系。
2、平面上的点与有序实数对的一一对应的关系。
3、函数式与图像之间的关系。
4、线段(角)的和、差、倍、分等问题,充分利用数来反映形。
5、解三角形,求角度和边长,引入了三角函数,这是用代数方法解决何问题。
6、“圆”这一章中,圆的定义,点与圆、直线与圆、圆与圆的位置关系等都是化为数量关系来处理的。
7、统计初步中统计的第二种方法是绘制统计图表,用这些图表的反映数据的分情况,发展趋势等。实际上就是通过“形”来反映数据扮布情况,发展趋势等。实际上就是通过“形”来反映数的特征,这是数形结合思想在实际中的直接应用。
三、转化思想 (化归思想)
在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。下列内容体现了这种思想:
1、分式方程的求解是分式方程转化为前面学过的一元二次方程求解,这里把待解决的新问题化为已解决的问题来求解,体现了转化思想。
2、解直角三角形;把非直角三形问题化为直角三角形问题;把实际问题转化为数学问题。
3、证明四边形的内角和为360度.是把四边形转化成两个三角形的.同时探索多边形的内角和也是利用转化的思想的.
四、分类思想
有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。
问题六:数学常用的数学思想方法有哪些 一、常用的数学思想(数学中的四大思想)
1.函数与方程的思想
用变量和函数来思考问题的方法就是函数思想,函数思想是函数概念、图象和性质等知识更高层次的提炼和概括,是在知识和方法反复学习中抽象出的带有观念的指导方法.
深刻理解函数的图象和性质是应用函数思想解题的基础,运用方程思想解题可归纳为三个步骤:①将所面临的问题转化为方程问题;②解这个方程或讨论这个方程,得出相关的结论;③将所得出的结论再返回到原问题中去.
2.数形结合思想
在中学数学里,我们不可能把“数”和“形”完全孤立地割裂开,也就是说,代数问题可以几何化,几何问题也可以代数化,“数”和“形 ”在一定条件下可以相互转化、相互渗透.
3.分类讨论思想
在数学中,我们常常需要根据研究对象性质的差异.分各种不同情况予以考察,这是一种重要数学思想方法和重要的解题策略 ,引起分类讨论的因素较多,归纳起来主要有以下几个方面:(1)由数学概念、性质、定理、公式的限制条件引起的讨论;(2)由数学变形所需要的限制条件所引起的分类讨论;(3)由于图形的不确定性引起的讨论;(4)由于题目含有字母而引起的讨论.
分类讨论的解题步骤一般是:(1)确定讨论的对象以及被讨论对象的全体;(2)合理分类,统一标准,做到既无遗漏又无重复 ;(3)逐步讨论,分级进行;(4)归纳总结作出整个题目的结论.
4.等价转化思想
等价转化是指同一命题的等价形式.可以通过变量问题的条件和结论,或通过适当的代换转化问题的形式,或利用互为逆否命题的等价关系来实现.
常用的转化策略有:已知与未知的转化;正向与反向的转化;数与形的转化;一般于特殊的转化;复杂与简单的转化.
㈧ 小学数学中哪些是基本的数学思想
小学数学中常见的数学思想方法有:
转化思想、集合思想、数形结合思想、函数思想、符号化思想、对应思想、分类思想、归纳思想、模型思想、统计思想等。