1. 初中数学核心素养包括哪些内容
初中数学核心素养包括数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析六大核心素养。数学教育的目标可分为显性目标与隐性目标两大内容,而核心素养属于隐性目标。在执行新课程改革标准时,初中数学教学除了传授知识包括数学概念、公式、法则、定理以外,更要促使学生形成数学逻辑思想,运用合理的数学方法解决现实问题,积累丰富的数学活动经验,这就是核心素养。
通俗地说,数学的核心素养有“真、善、美”三个维度:
1、理解理性数学文明的文化价值,体会数学真理的严谨性、精确性。
2、具备用数学思想方法分析和解决实际问题的基本能力。
3、能够欣赏数学智慧之美,喜欢数学,热爱数学。
2. 学好初一数学的有效方法
学好初一数学的三个方面
1、全面复习,把书读薄
全面复习不是生记硬背所有的知识,相反,是要抓住问题的实质和各内容各方法的本质联系,把要记的东西缩小到最小程度,(要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识),而且,不记则已,记住了就要牢靠,事实证明,有些记忆是终生不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们的联系而得到.这就是全面复习的含义。
2、突出重点,精益求精
在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌,会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点.在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多."猜题"的人,往往要在这方面下功夫.一般说来,也确能猜出几分来.但遇到综合题,这些题在主要内容中含有次要内容.这时,"猜题"便行不通了.我们讲的突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带次,用重点内容担挈整个内容.主要内容理解透了,其它的内容和方法迎刃而解.即抓出主要内容不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容。
3、基本训练 反复进行
学习数学,要做一定数量的题,把基本功练熟练透,但我们不主张"题海"战术,而是提倡精练,即反复做一些典型的题,做到一题多解,一题多变.要训练抽象思维能力,对些基本定理的证明,基本公式的推导,以及一些基本练习题,要作到不用书写,就象棋手下"盲棋"一样,只需用脑子默想,即能得到正确答案.这就是我们在常言中提到的,在20分钟内完成10道客观题.其中有些是不用动笔,一眼就能作出答案的题,这样才叫训练有素,"熟能生巧",基本功扎实的人,遇到难题办法也多,不易被难倒.相反,作练习时,眼高手低,总找难题作,结果,上了考场,遇到与自己曾经作过的类似的题目都有可能不会;不少考生把会作的题算错了,归为粗心大意,确实,人会有粗心的,但基本功扎实的人,出了错立即会发现,很少会"粗心"地出错。
学好初一数学六大诀窍。
一、良好的心理素养、痴迷的学习兴趣——学好数学的前提。
喜爱也就是做一件事的理由和把事情坚持下去的最强动力。良好的心理素养、近乎痴迷的兴趣是高效率学习数学的前提,也是在最后的考试中取胜的必要条件。
二、持之以恒、百折不挠的毅力——学好数学的保障。
学习是要吃苦的,是要能忍得住板凳上、台灯前的寂寞。学习就是学习,学习不是娱乐,没有哪一种学习方法能让你象看美国大片似的学到博士。这是自然规律。北京四中每年的生源都不错。
三、事半功倍的方法——学好数学的手段。
1、做一个个人错题集。
2、参考书有一本足矣。
3、遇到疑难该怎么办呢?
4、怎么跳出题海?
5、学习中考场制胜的法宝
6、正确认识考试。
数学学习中的"读听讲写用"
全面推进数学素质教育,使学生成为积极的探索者、思考者,必须重视学生“学”的过程,抓好学生数学学习中的“读、听、讲、写、用”。
1.学习中的“读”
现代社会已进入信息化时代,要求人们不仅要“学会”,更要“会学”。“会学”的基础当是会“读”,包括:
1.1读教材是学生学习数学的主要材料,它是数学课程教材编制专家在充分考虑学生生理心理特征、教育教学质量、数学学科特点等众多因素的基础上精心编写而成的,具有极高的阅读价值。读教材包括课前、课堂、课后三个环节。课前读教材属于了解教材内容,发现疑难问题;课堂读教材则能更深刻地理解教材内容,掌握有关知识点;课后读教材是对前面两个环节的深化和拓展,达到对教材内容的全面、系统的理解和掌握。
1.2读书刊 除读教材外,学生应广泛阅读课外读物,如上海教育出版社出版的“初、高中学生数学课外阅读系列”丛书、《中学生数学》杂志等。即如读报也不仅能使学生关心国内外大事,也能使学生关注我们日常生活中的数学,捕捉身边的数学信息,体会数学的价值,了解数学研究的动态。然而,与各种各样的复习资料、习题集相比,渗透现代科技的高质量的数学课外读物实在太少了。
数学学习中的“读”,不同于读小说书,常需纸笔演算推理来“架桥铺路”,还需大脑建起灵活的语言转化机制。
2. 数学学习中的“听”
数学学习中的“听”,主要指听课,它是学生获取知识的重要环节,也是学
生系统学习知识的基本方法。听课不仅指听老师上课,而且包括听同学的发言。
2.1 听老师上课主要是听老师上课的思路,即发现问题、明确问题、提出假设、检验假设的思维过程。既要听老师讲解、分析、发挥时的每一句话,更要抓住重点,听好关键性的步骤,概括性的叙述。特别是自己读教材时发现或产生的疑难问题。
2.2 听同学发言 倾听和接受他人的数学思想和方法,不仅是听老师上课,也包括听同学的发言。同学间的思想交流更能引起共鸣。从中可以了解其他同学学习数学和思考问题的方法,加之老师适时的点拨和评价,有利于自己开阔思路、激发思考、澄清思维、引起反思。学会倾听老师和同学的意见,反思自己的想法,有助于发展学生良好的个性,培养团结协作的精神,增强群体凝聚力。
3. 数学学习中的“讲”
培养良好的语言文字表达能力,不仅是语文学习的任务,也是提高数学素养的重要内容,是数学学习的任务之一。数学学习中的“讲”是培养学生语言文字表达能力的重要形式,包括讲体会、讲思路等。
3.1 讲体会 学生通过读教材、读书刊,听上课、听发言后,再让学生讲“读”、“听”的体会,可以加深“读、听”内容的理解和掌握。如讲教材内容,特别是教材中“读—— 读”内容的体会,讲报刊杂志中的数学,讲课外读物上的内容概要,讲对老师上课、同学发言的看法,甚至讲自己存在的疑问等。
3.2 讲思路 学习数学离不开解题,但不能为解题而解题,应在解题过程中重视解题思路的讲解,哪怕是错误的思路从中也能吸取经验教训,深刻理解数学概念和原理。以学生的作业作为了解学生学习状况的唯一通道往往掩盖了学生思维的完整过程,是不全面的。通过学生大胆地讲,才能全面反应学生的思想,暴露学生思维的过程,以利于教师掌握准确的反馈信息,及时调整教学计划。
4. 数学学习中的“写”
数学学习中的“写”是培养学生书面表达能力的重要形式。通过上述“读、听、写”,应进一步要求“写”,它是对“读”、“听”的检验,对“讲”的深化。除通常要完成的书面写(做)作业外,还应包括写读后感、写小论文等。
4.1 写读后感 通过阅读教材,尤其是教材中的“读一读”内容,以及报刊杂志、课外读物的有关内容,把自己的感想或者内容概要写下来,不求面面俱到,只求日积月累,培养兴趣,提高文字表达能力。
4.2 写小论文 写小论文比写读后感的要求更高些,但不是不可做到。这需要学生广泛阅读,积累资料,深入探究,学会分析问题、提出问题和解决问题的能力,培养敏锐的观察力,增强创新意识,提高创新能力。
5. 数学学习中的“用”
数学是现实世界的抽象反映和人类经验的总结,是构成现代文化的重要组 成部分,数学知识的学习必须与数学应用有机地结合起来,正如“学以致用”是我们一直所倡导的。但强调应用,不是再回到“测量、制图、会计”等那种忽视基础理论的邪 路上去,而是要培养学生用数学的意识,学会用数学的理论、思想和方法分析解决其他学科问题和生活、生产实际问题。真正体现数学的应用价值。
数学学习中的“读、听、讲、写、用”是一个有机的整体,其中每一个环节都离不开教师的积极引导、点拨,更需要学生积极主动的学习精神。只有师生之间的积极配合,才能取得教与学的最佳效果。
结语:路漫漫其修远兮,吾将上下而求索。以上是我为你整理的资料,希望你喜欢阅读,并能给你带来帮助。
3. 如何学好初一数学
学好数学是能力的培养:
一、数学运算
运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。初中运算能力不过关,会直接影响高中数学的学习。在面对复杂运算的时候,常常要注意以下两点:①情绪稳定,算理明确,过程合理,速度均匀,结果准确;②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。
二、数学基础知识
理解和记忆数学基础知识是学好数学的前提。理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的。所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”。理解的标准是“准确”、“简单”和“全面”。“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏。对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法。
记忆是个体对其经验的识记、保持和再现,是信息的输入、编码、储存和提取。借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“抛物线”三个字,你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。另外,在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式都是以三角函数定义和加法定理为基础的,如果能在记忆公式的同时,掌握推导公式的方法,就能有效地防止遗忘。
三、数学解题
学数学没有捷径可走,保证做题的数量和质量是学好数学的必由之路。保证数量就是①选准一本与教材同步的辅导书或练习册。②做完一节的全部练习后,对照答案进行批改。千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的题;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有两种处理方式:“先做后看”与“先看后测”。③选择有思考价值的题,与同学、老师交流,并把心得记在自习本上。④每天保证1小时左右的练习时间。
保证质量就是①题不在多,而在于精,学会“解剖麻雀”。充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?再现思维活动经过,分析想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法;一题多解,一题多变,多元归一。②落实:不仅要落实思维过程,而且要落实解答过程。③复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法。
四、数学思维
数学思维与哲学思想的融合是学好数学的高层次要求。比如,数学思维方法都不是单独存在的,都有其对立面,并且两者能够在解决问题的过程中相互转换、相互补充,如直觉与逻辑,发散与定向、宏观与微观、顺向与逆向等等,如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法,或许就会有“山重水复疑无路,柳暗花明又一村”的感觉。比如,在一些数列问题中,求通项公式和前n项和公式的方法,除了演绎推理外,还可用归纳推理。应该说,领悟数学思维中的哲学思想和在哲学思想的指导下进行数学思维,是提高学生数学素养、培养学生数学能力的重要方法。
只要我们重视运算能力的培养,扎扎实实地掌握数学基础知识,学会聪明地做题,并且能够站到哲学的高度去反思自己的数学思维活动,就一定能把数学学好。