导航:首页 > 数字科学 > 中国用数学怎么表示什么意思

中国用数学怎么表示什么意思

发布时间:2023-03-13 05:59:30

1. 中国传统数学的主要特征是什么从哪些成就表现出来

数学是研究客观事物的空间形式与数量关系的科学。它不受任何时间和空间的限制,强烈地显现这一本质属性。然而,在古代各个时期不同的文化传统中,数学的表现形式往往也不尽相同,各自呈现出自己的特征。比如中国古典数学在表现形式、思维模式、与社会实际的关系、研究的中心以及发展的历程等许多方面与其他文化传统,特别是古希腊数学有较大的区别。

首先是其表现形式,这里主要指数学经典的着作形式。古希腊数学常常采取抽象的公理化的形式,而中国古典数学则是以术文统率例题的形式。两种不同的形式,代表着迥然不同的两种风格。这两种形式和风格同样可以阐发数学理论的基础。有人往往忽略了这一点,把中国古代数学着作笼统地概括成应用问题集的形式。只要仔细分析、比较一下数学着作本身,就不难发现这个结论是极不正确的。比如最重要的着作《九章算术》,它的九章中,方田、粟米、少广、商功、盈不足、方程六章的全部及衰分、均输、勾股三章的部分,要么先列出一个或几个例题,然后给出十分抽象的“术”;要么先列出十分抽象的“术”,然后给出若干例题。这里的“术”都是些公式或抽象的计算程序;前者的例题只有题目及答案,后者的例题则包括题目、答案与“术”。所谓“术”就是阐述各种算法及具体应用,类似于后世的细草。《九章算术》中只有约五分之一的部分,即衰分、均输、勾股三章的约50个题目,可以说是应用问题集的形式。由此就得出《九章算术》是一部应用问题集的结论是不恰当的,正确的提法应是术文统率例题的形式。后来的《孙子算经》等的主体应该说是应用问题集的形式,但把一些预备知识放到了卷首。宋元数学高潮中的着作,贾宪《黄帝九章算经细草》的抽象性更高于《九章算术》,其它着作由于算法更为复杂,算法的抽象性有时达不到《九章》的程度,但是也作了可贵的努力,如《数书九章》的“大衍总数术”及其核心“大衍求一术”就是同余式解法的总术;“正负开方术”用抽象的文字阐述了开四次方的方法后,又声明“后篇效此”,说明也是普遍方法。朱世杰的两部着作都把大量预备知识、算法放在卷首,《四元玉鉴》的卷首还载有天元术、二元术、三元术、四元术的解法范例。《测圆海镜》更是把“圆城图式”及后面要用到的定义、命题列入卷一的“识别杂记”。因此,总的说来,算法(术)是解应用题的关键,“术”自然就成为中国古代数学的核心。中国数学着作是以算法为核心,算法统率例题的形式。中国传统文化

其次是关于数学理论的研究。古希腊数学使用演绎推理,使数学知识形成了严谨的公理化体系。许多学者夸大了中国古算与古希腊数学的差别,认为中国古代数学成就只是经验的积累,没有推理,尤其是没有演绎推理。这是对中国古代数学缺乏起码了解的肤浅之见。遗憾的是,这种肤浅之见被某些科学泰斗所赞同而颇为流行,甚至成为论述现代科学没有在中国产生的出发点。诚然,中国古代数学与哲学结合得不像古希腊那么紧密,中国古代数学大家也不像古希腊数学大师那样大多是思想界的头面人物或思想流派的首领。一般说来,中国思想家对数学的兴趣远逊于古希腊的同仁,先秦诸子中即使数学修养最高的墨家,其数学成就也难望古希腊思想家的项背。同样,中国数学家,就整体而言,对数学理论研究的关注,也远不如古希腊数学家。比如,《九章算术》和许多数学着作对数学概念没有定义,许多数学问题的表述,并不严谨。这就要求读者必须站在作者的立场上,与作者共处于一个和谐的体系中,才能理解其内容,这或多或少也阻碍了数学理论的发展。硬说中国古代与古希腊同样重视数学理论研究,固然是不妥的。反之,说中国古代数学没有理论,没有推理,也是不符史实的。《周髀算经》记载,先秦数学家陈子在教诲荣方时,指出他之所以对某些数学原理不能理解,在于他“之于数未能通类”,他认为数学的“道术”,“言约而用博”,必须做到“能类以合类”。陈子大约处于《九章算术》编纂过程的初期。实际上,《九章》的编纂正是贯穿了“通类”、“类以合类”的思想。《九章算术》的作者把能用同一种数学方法解决的问题归于一类,提出共同的、抽象的“术”,如方田术、圆田术、今有术、衰分术、返衰术、少广术、开方术、盈不足术、均输术、方程术、勾股术等等,又将这些术及例题按其性质或应用分成方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九类。刘徽进一步挖掘《九章》许多方法的内在联系,又将衰分术、均输术、方程新术等归结到今有术。刘徽正是通过“事类相推”,找出了各种方法的归宿,发现数学知识是“枝条虽分而同本干”,并“发自一端”的一株大树,形成了自己完整的数学理论体系。贾宪总结开方法,创造开方作法本源。杨辉总结出勾股生变十三名图,李冶探讨了各种容圆关系,给出600多条公式,也都是通过归纳、类比做到通类,进而“类以合类”,进行数学的理论概括。

通过“合类”,归纳出抽象的公式之后,将这些公式应用于解某些数学问题,实际上是从一般到特殊的演绎过程,这里要特别谈一下中国古代数学中有没有演绎推理的问题。大家知道,数学知识的获得,要通过类比、归纳、演绎各种推理途径,而证明一个数学命题的正确性,则必须依靠演绎推理。中国古代数学着作正是大量使用演绎推理。以中国古代最为发达的高次方程这一分支为例,刘徽、王孝通都提出了方程的推导过程,金元数学家更创造了设未知数列方程的天元术,李冶将用天元术列方程所需要的定理、公式大都在卷一的“识别杂记”中给出。刘徽、王孝通、秦九韶、李冶、朱世杰等推导高次方程的过程都是依靠演绎推理的,因而是正确的。至于刘徽用极限思想和无穷小分割对圆面积公式的证明,对锥体体积公式的证明;用出入相补原理对解勾股形诸公式的证明,对大量面积、体积公式的证明,对开方术的证明;利用齐同原理对方程术、盈不足术及许多算法的证明,都是演绎推理的典范。只要不带偏见,都会认识到刘徽在拓展数学知识时以归纳、类比为主,而在论证《九章算术》的公式、算法的正确性时,在批驳《九章算术》的某些错误时,则以演绎推理为主,从而把他自己掌握的数学知识建立在可靠的理论基础之上。

说数学研究与思想界结合得不密切,是就整体而言的,并不是说每个数学家都如此,比如刘徽就例外。他深受魏晋辩难之风的影响,他对《九章算术》“析理以辞,解体用图”,“析理”正是辩难之风的要件,刘徽析理的原则、析理的方法都是与当时辩难之风合拍的。当然,即使是刘徽对许多数学概念的探讨还没达到古希腊那么深入的地步。比如,刘徽将无穷小分割引入数学证明是前无古人的贡献,却从未考虑过潜无穷小与实无穷小的区别。不过,这未必是坏事。古希腊数学家无法圆满解决潜无限与实无限的问题,不得不把无穷小概念排除在数学研究之外,因此,他们在证明数学命题时,从未使用过极限思想和无穷小分割。刘徽则不然,他认为圆内接正多边形边数无限增多,最后必定“与圆周合体”,因此可以对与圆周合体的正多边形进行无穷小分割并求其面积之和;他认为对阳马与鳖臑组成的堑堵进行无穷分割,可以达到“微则无形”的地步;刘徽在极限思想的运用上远远超过了古希腊的同类思想,达到了文艺复兴前世界数学界的最高峰。古希腊数学家认为正方形的对角线与其边长没有公度,即与1没有公度,导致数学史上的第一次危机,使古希腊数学转向,把计算排除在数学之外,只注重空间形式的研究,因而在无理数面前束手无策。而刘徽、祖冲之等则不然,他们对“开之不尽”的“不可开”的数,敢于继续开方,“求其微数”,以十进分数无限逼近无理根的近似值。没有陷入哲学的争论,从数学计算的实际出发,使中国数学家能够绕过曾导致希腊数学改变航向或裹足不前的暗礁,在数学理论和实践上达到古希腊数学家所不曾达到的高度。

长于计算,以算法为中心,是中国古代数学的显着特点。古希腊数学只考虑数和形的性质,而不考虑具体数值。比如,他们很早就懂得,任何一个圆的周长与直径之比是个常数,但这个常数的数值,几百年无人问津,直到阿基米德才求出其值的范围。相反,中国古典数学几乎不研究离开数量关系的图形的性质,而通过切实可行的方法把实际问题化为一类数学模型,然后用一套程序化即机械化的算法求解。算经中的“术”全是计算公式与计算程序,或应用这些公式、程序的细草,所有的问题都要算出具体数值作为答案,即使几何问题,也要算出有关因素的长度、面积、体积。这就是几何方法与算法相结合,或几何问题的算法化。刘徽说:“以法相传,亦犹规矩、度量可得而共”(《九章算术注·序》),清楚地表达了中国古算形、数结合的特点。《九章算术》的开方术、方程术、盈不足术、衰分术、均输术,刘徽计算圆周率的割圆术、计算弧田面积近似值的方法,贾宪求贾宪三角各廉的增乘方法,贾宪开创而秦九韶使之完备的求高次方程正根的正负开方术,秦九韶的同余式解法,朱世杰的四元术,等等,都有相当复杂的计算程序。数学运算的程序化使复杂的计算问题易于掌握,即使不懂其数学原理,也可掌握其程序,于是产生了程序的辅助用表“立成”。上述这些程序都具有完全确定性、对一整类问题适用性及有效性等现代算法的三个特点。许多程序几乎可以一字不差地搬到现代电子计算机上实现。

先进的记数制度,强烈的位置值制是促成中国算法理论充分发展的重要因素。中国最早发明了十进位置值制记数法,这种记数法十分有利于加减乘除四则运算及分数、小数的表示。加之汉语中数字都是单音节,便于编成口诀,促成筹算乘除捷算法向口诀的转化。而筹算的使用使分离系数表示法成为顺理成章。线性方程组的分离系数表示法、开方式的记法、天元多项式、四元式的记法,实际上也是一种位置值制。未知数的幂次完全由其在表达式中的位置决定,而不必写出未知数本身,如开方式中,自上而下依次是“商”、“实”(常数项)、“方”(一次项)、“一廉”、“二廉”(二、三次项系数)……隅(最高次项系数)。天元式也是如此,只是因为运算中有正幂也有负幂,才需要在常数项旁标一“太”字,或在一次项旁标一“元”字,未知数幂次完全由与“太”或“元”的相对位置决定。这种表示法特别便于开方或加减乘除运算,尤其是用天元的幂次乘(或除),只要上下移动“太”或“元”字的位置即可。

数学理论密切联系实际,是中国古代数学的又一显着特征。不能把古算经的所有题目都看成日常生产生活的应用题,有些题目只是为了说明算法的例题,《九章算术》和《测圆海镜》中都有此类题目。但是,中国古算确实是以应用为目的的,这是与古希腊数学的显着区别之一。后者公开申明不以实际应用为目的,而是看成纯理念的精神活动,欧几里得几乎抹去了《几何原本》的实际来源的所有蛛丝马迹。而中国数学家却从不讳言研究数学的功利主义目的。自《汉书·律历志》到刘徽、秦九韶,都把数学的作用概括为“通神明”、“类万物”两个方面。这里神明的意义既可作神秘主义来理解,也可以看作说明物质世界的变化性质的范畴,或二者兼而有之。《九章算术》刘徽为其注没有任何神秘主义的成份,对通神明的作用也没作任何阐发,刘徽倒是明确指出了《九章算术》各章在实际生产生活中的应用范围:方田以御田畴界域,粟米以御交质变易,衰分以御贵贱禀税,少广以御积幂方圆,商功以御功程积实,均输以御远近劳费,盈不足以御隐杂互见,方程以御错糅正负,勾股以御高深广远,显然是“类万物”方面。秦九韶把“通神明”看作数学作用之大者,并且其理解是神秘主义与世界变化的性质二者兼而有之的,而把类万物、经世务看成数学作用之小者。尽管他表示要将数学“进之于道”,但他的数学研究实践使他感到对于大者仍“肤末于见”,而注重于小者,认识到“数术之传,以实为体”,因此“设为问答以拟于用”。他的《数书九章》除第一问外,大都是实际生活、生产及各种工程的应用题,反映南宋经济活动之翔实远胜于《九章算术》等着作对当时现实经济活动的反映。总之,中国数学密切联系实际,并在实际应用中得到发展。也许正因为有这个长处,中国数学从《九章算术》到宋元高潮,基本上坚持了唯物主义传统,未受到数字神秘主义的影响。明朝着作有一些神秘主义的东西,具有穿靴戴帽的性质,但仍不能改变以实际应用为目的这一总的特征。

统治者对数学的态度造成了中国与希腊数学不同的发展特点。古希腊统治者非常重视数学,造成希腊数学有很强的连续性、继承性。而中国古代的统治者,除个别者外,大都不重视数学。秦始皇统一中国,较为重视数学的墨家遭到镇压,汉朝以后独尊儒术,儒法合流,读经学礼,崇尚文史,成为一种社会风气。由于数学对国计民生的重大作用,统治阶级又不得不承认“算术亦六艺要事”(《颜氏家训·杂艺》),但却主张“可以兼明,不可以专业”(同上)。数学一直被视为“九九贱技”。刘徽哀叹“当今好之者寡”,(《九章算术注·序》)秦九韶说“后世学者鄙之不讲”,(《数书九章序》)李冶以大儒研究数学,自谓“其悯我者当百数,其笑我者当千数”。(《测圆海镜序》)刘徽所处之魏晋,秦、李所处之宋元,都是中国数学兴盛时期,尚且如此,何论其他!二十四史,林林总总,列入无数帝王将相,以及文学家、思想家,甚至烈女节妇,却没有为一个数学家立传,祖冲之、李冶有传,却是以文学家、名臣的身份入传的。社会的需要,以及世代数学家不计悯笑,刻苦钻研,自汉迄元,使中国数学登上了世界数坛的一个又一个高峰,然而中国数学的发展常常大起大落,艰难地前进。更使人觉得奇怪的是,高潮往往出现在战乱时期,如战国时期《九章算术》主要成就的奠基,魏晋南北朝数学理论的建立,宋辽金元筹算数学的高潮;相反,低谷往往出现在大一统的太平盛世,如唐、明两代,不仅数学建树甚少,甚至到了大数学家看不懂前代成果的可笑地步!这当然丝毫不意味着战乱、分裂比安定、统一更有利于数学的发展,而是因为战乱时期,儒家思想的统治地位往往受到冲击,社会思潮较为活跃,思想比较解放。同时由于战乱,读经入仕的道路被堵,知识分子稍稍能按自己的兴趣和社会的需求发挥自己的才智,所蕴藏的数学才能也得到较充分展示,致使处于夹缝中的数学研究状况反而比大一统的太平盛世更好一些罢了。

2. 中国古代数学都是用什么符号表示的

数学是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。 中国古代数学的萌芽 原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。 西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。 商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。 公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为”六艺”之一的数已经开始成为专门的课程。 春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。 战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出”矩不方,规不可以为圆”,把”大一”(无穷大)定义为”至大无外”,”小一”(无穷小)定义为”至小无内”。还提出了”一尺之棰,日取其半,万世不竭”等命题。 而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、方、平、直、次(相切)、端(点)等等。 墨家不同意”一尺之棰”的命题,提出一个”非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的”非半”,这个”非半”就是点。 名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。 中国古代数学体系的形成 秦汉是封建社会的上升时期,经济和文化均得到迅速发展。中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学着作的出现。 《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名着。例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的。其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。 《九章算术》有几个显着的特点:采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。 这些特点是同当时社会条件与学术思想密切相关的。秦汉时期,一切科学技术都要为当时确立和巩固封建制度,以及发展社会生产服务,强调数学的应用性。最后成书于东汉初年的《九章算术》,排除了战国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合的数学问题及其解法,这与当时社会的发展情况是完全一致的。 《九章算术》在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。它的一些成就如十进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过印度、阿拉伯传到欧洲,促进了世界数学的发展。 中国古代数学的发展 魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。 赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充的”勾股圆方图及注”和”日高图及注”是十分重要的数学文献。在”勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在”日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。 刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进行”析理”,才能使数学着作简明严密,利于读者。他的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为157/50和3927/1250。 刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。 东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。他们的数学工作主要有:计算出圆周率在3.1415926~3.1415927之间;提出祖(日恒)原理;提出二次与三次方程的解法等。 据推测,祖冲之在刘徽割圆术的基础上,算出圆内接正6144边形和正12288边形的面积,从而得到了这个结果。他又用新的方法得到圆周率两个分数值,即约率22/7和密率355/113。祖冲之这一工作,使中国在圆周率计算方面,比西方领先约一千年之久; 祖冲之之子祖(日恒)总结了刘徽的有关工作,提出”幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是着名的祖(日恒)公理。祖(日恒)应用这个公理,解决了刘徽尚未解决的球体积公式。 隋炀帝好大喜功,大兴土木,客观上促进了数学的发展。唐初王孝通的《缉古算经》,主要讨论土木工程中计算土方、工程分工、验收以及仓库和地窖的计算问题,反映了这个时期数学的情况。王孝通在不用数学符号的情况下,立出数字三次方程,不仅解决了当时社会的需要,也为后来天元术的建立打下基础。此外,对传统的勾股形解法,王孝通也是用数字三次方程解决的。 唐初封建统治者继承隋制,656年在国子监设立算学馆,设有算学博士和助教,学生30人。由太史令李淳风等编纂注释《算经十书》,作为算学馆学生用的课本,明算科考试亦以这些算书为准。李淳风等编纂的《算经十书》,对保存数学经典着作、为数学研究提供文献资料方面是很有意义的。他们给《周髀算经》、《九章算术》以及《海岛算经》所作的注解,对读者是有帮助的。隋唐时期,由于历法的需要,天算学家创立了二次函数的内插法,丰富了中国古代数学的内容。 算筹是中国古代的主要计算工具,它具有简单、形象、具体等优点,但也存在布筹占用面积大,运筹速度加快时容易摆弄不正而造成错误等缺点,因此很早就开始进行改革。其中太乙算、两仪算、三才算和珠算都是用珠的槽算盘,在技术上是重要的改革。尤其是”珠算”,它继承了筹算五升十进与位值制的优点,又克服了筹算纵横记数与置筹不便的缺点,优越性十分明显。但由于当时乘除算法仍然不能在一个横列中进行。算珠还没有穿档,携带不方便,因此仍没有普遍应用。 唐中期以后,商业繁荣,数字计算增多,迫切要求改革计算方法,从《新唐书》等文献留下来的算书书目,可以看出这次算法改革主要是简化乘、除算法,唐代的算法改革使乘除法可以在一个横列中进行运算,它既适用于筹算,也适用于珠算。 中国古代数学的繁荣 960年,北宋王朝的建立结束了五代十国割据的局面。北宋的农业、手工业、商业空前繁荣,科学技术突飞猛进,火药、指南针、印刷术三大发明就是在这种经济高涨的情况下得到广泛应用。1084年秘书省第一次印刷出版了《算经十书》,1213年鲍擀之又进行翻刻。这些都为数学发展创造了良好的条件。 从11~14世纪约300年期间,出现了一批着名的数学家和数学着作,如贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》《四元玉鉴》等,很多领域都达到古代数学的高峰,其中一些成就也是当时世界数学的高峰。 从开平方、开立方到四次以上的开方,在认识上是一个飞跃,实现这个飞跃的就是贾宪。杨辉在《九章算法纂类》中载有贾宪”增乘开平方法”、”增乘开立方法”;在《详解九章算法》中载有贾宪的”开方作法本源”图、”增乘方法求廉草”和用增乘开方法开四次方的例子。根据这些记录可以确定贾宪已发现二项系数表,创造了增乘开方法。这两项成就对整个宋元数学发生重大的影响,其中贾宪三角比西方的帕斯卡三角形早提出600多年。 把增乘开方法推广到数字高次方程(包括系数为负的情形)解法的是刘益。《杨辉算法》中”田亩比类乘除捷法”卷,介绍了原书中22个二次方程和1个四次方程,后者是用增乘开方法解三次以上的高次方程的最早例子。 秦九韶是高次方程解法的集大成者,他在《数书九章》中收集了21个用增乘开方法解高次方程(最高次数为10)的问题。为了适应增乘开方法的计算程序,奏九韶把常数项规定为负数,把高次方程解法分成各种类型。当方程的根为非整数时,秦九韶采取继续求根的小数,或用减根变换方程各次幂的系数之和为分母,常数为分子来表示根的非整数部分,这是《九章算术》和刘徽注处理无理数方法的发展。在求根的第二位数时,秦九韶还提出以一次项系数除常数项为根的第二位数的试除法,这比西方最早的霍纳方法早500多年。 元代天文学家王恂、郭守敬等在《授时历》中解决了三次函数的内插值问题。秦九韶在”缀术推星”题、朱世杰在《四元玉鉴》”如象招数”题都提到内插法(他们称为招差术),朱世杰得到一个四次函数的内插公式。 用天元(相当于x)作为未知数符号,立出高次方程,古代称为天元术,这是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题。现存最早的天元术着作是李冶的《测圆海镜》。 从天元术推广到二元、三元和四元的高次联立方程组,是宋元数学家的又一项杰出的创造。留传至今,并对这一杰出创造进行系统论述的是朱世杰的《四元玉鉴》。 朱世杰的四元高次联立方程组表示法是在天元术的基础上发展起来的,他把常数放在中央,四元的各次幂放在上、下、左、右四个方向上,其他各项放在四个象限中。朱世杰的最大贡献是提出四元消元法,其方法是先择一元为未知数,其他元组成的多项式作为这未知数的系数,列成若干个一元高次方程式,然后应用互乘相消法逐步消去这一未知数。重复这一步骤便可消去其他未知数,最后用增乘开方法求解。这是线性方法组解法的重大发展,比西方同类方法早400多年。 勾股形解法在宋元时期有新的发展,朱世杰在《算学启蒙》卷下提出已知勾弦和、股弦和求解勾股形的方法,补充了《九章算术》的不足。李冶在《测圆海镜》对勾股容圆问题进行了详细的研究,得到九个容圆公式,大大丰富了中国古代几何学的内容。 已知黄道与赤道的夹角和太阳从冬至点向春分点运行的黄经余弧,求赤经余弧和赤纬度数,是一个解球面直角三角形的问题,传统历法都是用内插法进行计算。元代王恂、郭守敬等则用传统的勾股形解法、沈括用会圆术和天元术解决了这个问题。不过他们得到的是一个近似公式,结果不够精确。但他们的整个推算步骤是正确无误的,从数学意义上讲,这个方法开辟了通往球面三角法的途径。 中国古代计算技术改革的高潮也是出现在宋元时期。宋元明的历史文献中载有大量这个时期的实用算术书目,其数量远比唐代为多,改革的主要内容仍是乘除法。与算法改革的同时,穿珠算盘在北宋可能已出现。但如果把现代珠算看成是既有穿珠算盘,又有一套完善的算法和口诀,那么应该说它最后完成于元代。 宋元数学的繁荣,是社会经济发展和科学技术发展的必然结果,是传统数学发展的必然结果。此外,数学家们的科学思想与数学思想也是十分重要的。宋元数学家都在不同程度上反对理学家的象数神秘主义。秦九韶虽曾主张数学与道学同出一源,但他后来认识到,”通神明”的数学是不存在的,只有”经世务类万物”的数学;莫若在《四元玉鉴》序文中提出的”用假象真,以虚问实”则代表了高度抽象思维的思想方法;杨辉对纵横图结构进行研究,揭示出洛书的本质,有力地批判了象数神秘主义。所有这些,无疑是促进数学发展的重要因素。 中西方数学的融合 中国从明代开始进入了封建社会的晚期,封建统治者实行极权统治,宣传唯心主义哲学,施行八股考试制度。在这种情况下,除珠算外,数学发展逐渐衰落。 16世纪末以后,西方初等数学陆续传入中国,使中国数学研究出现一个中西融合贯通的局面;鸦片战争以后,近代数学开始传入中国,中国数学便转入一个以学习西方数学为主的时期;到19世纪末20世纪初,近代数学研究才真正开始。 从明初到明中叶,商品经济有所发展,和这种商业发展相适应的是珠算的普及。明初《魁本对相四言杂字》和《鲁班木经》的出现,说明珠算已十分流行。前者是儿童看图识字的课本,后者把算盘作为家庭必需用品列入一般的木器家具手册中。 随着珠算的普及,珠算算法和口诀也逐渐趋于完善。例如王文素和程大位增加并改善撞归、起一口诀;徐心鲁和程大位增添加、减口诀并在除法中广泛应用归除,从而实现了珠算四则运算的全部口诀化;朱载墒和程大位把筹算开平方和开立方的方法应用到珠算,程大位用珠算解数字二次、三次方程等等。程大位的着作在国内外流传很广,影响很大。 1582年,意大利传教士利玛窦到中国,1607年以后,他先后与徐光启翻译了《几何原本》前六卷、《测量法义》一卷,与李之藻编译《圜容较义》和《同文算指》。1629年,徐光启被礼部任命督修历法,在他主持下,编译《崇祯历书》137卷。《崇祯历书》主要是介绍欧洲天文学家第谷的地心学说。作为这一学说的数学基础,希腊的几何学,欧洲玉山若干的三角学,以及纳皮尔算筹、伽利略比例规等计算工具也同时介绍进来。 在传入的数学中,影响最大的是《几何原本》。《几何原本》是中国第一部数学翻译着作,绝大部分数学名词都是首创,其中许多至今仍在沿用。徐光启认为对它”不必疑”、”不必改”,”举世无一人不当学”。《几何原本》是明清两代数学家必读的数学书,对他们的研究工作颇有影响。 其次应用最广的是三角学,介绍西方三角学的着作有《大测》《割圆八线表》和《测量全义》。《大测》主要说明三角八线(正弦、余弦、正切、余切、正割、余割、正矢、余矢)的性质,造表方法和用表方法。《测量全义》除增加一些《大测》所缺的平面三角外,比较重要的是积化和差公式和球面三角。所有这些,在当时历法工作中都是随译随用的。 1646年,波兰传教士穆尼阁来华,跟随他学习西方科学的有薛凤柞、方中通等。穆尼阁去世后,薛凤柞据其所学,编成《历学会通》,想把中法西法融会贯通起来。《历学会通》中的数学内容主要有比例对数表》《比例四线新表》和《三角算法》。前两书是介绍英国数学家纳皮尔和布里格斯发明增修的对数。后一书除《崇祯历书》介绍的球面三角外,尚有半角公式、半弧公式、德氏比例式、纳氏比例式等。方中通所着《数度衍》对对数理论进行解释。对数的传入是十分重要,它在历法计算中立即就得到应用。 清初学者研究中西数学有心得而着书传世的很多,影响较大的有王锡阐《图解》、梅文鼎《梅氏丛书辑要》(其中数学着作13种共40卷)、年希尧《视学》等。梅文鼎是集中西数学之大成者。他对传统数学中的线性方程组解法、勾股形解法和高次幂求正根方法等方面进行整理和研究,使濒于枯萎的明代数学出现了生机。年希尧的《视学》是中国第一部介绍西方透视学的着作。 清康熙皇帝十分重视西方科学,他除了亲自学习天文数学外,还培养了一些人才和翻译了一些着作。1712年康熙皇帝命梅彀成任蒙养斋汇编官,会同陈厚耀、何国宗、明安图、杨道声等编纂天文算法书。1721年完成《律历渊源》100卷,以康熙”御定”的名义于1723年出版。其中《数理精蕴》主要由梅彀成负责,分上下两编,上编包括《几何原本》、《算法原本》,均译自法文着作;下编包括算术、代数、平面几何平面三角、立体几何等初等数学,附有素数表、对数表和三角函数表。由于它是一部比较全面的初等数学网络全书,并有康熙”御定”的名义,因此对当时数学研究有一定影响。 综上述可以看到,清代数学家对西方数学做了大量的会通工作,并取得许多独创性的成果。这些成果,如和传统数学比较,是有进步的,但和同时代的西方比较则明显落后了。 雍正即位以后,对外闭关自守,导致西方科学停止输入中国,对内实行高压政策,致使一般学者既不能接触西方数学,又不敢过问经世致用之学,因而埋头于究治古籍。乾嘉年间逐渐形成一个以考据学为主的乾嘉学派。 随着《算经十书》与宋元数学着作的收集与注释,出现了一个研究传统数学的高潮。其中能突破旧有框框并有发明创造的有焦循、汪莱、李锐、李善兰等。他们的工作,和宋元时代的代数学比较是青出于蓝而胜于蓝的;和西方代数学比较,在时间上晚了一些,但这些成果是在没有受到西方近代数学的影响下独立得到的。 与传统数学研究出现高潮的同时,阮元与李锐等编写了一部天文数学家传记-《畴人传》,收集了从黄帝时期到嘉庆四年已故的天文学家和数学家270余人(其中有数学着作传世的不足50人),和明末以来介绍西方天文数学的传教士41人。这部着作全由”掇拾史书,荃萃群籍,甄而录之”而成,收集的完全是第一手的原始资料,在学术界颇有影响。 1840年鸦片战争以后,西方近代数学开始传入中国。首先是英人在上海设立墨海书馆,介绍西方数学。第二次鸦片战争后,曾国藩、李鸿章等官僚集团开展”洋务运动”,也主张介绍和学习西方数学,组织翻译了一批近代数学着作。 其中较重要的有李善兰与伟烈亚力翻译的《代数学》《代微积拾级》;华蘅芳与英人傅兰雅合译的《代数术》《微积溯源》《决疑数学》;邹立文与狄考文编译的《形学备旨》《代数备旨》《笔算数学》;谢洪赉与潘慎文合译的《代形合参》《八线备旨》等等。 《代微积拾级》是中国第一部微积分学译本;《代数学》是英国数学家德·摩根所着的符号代数学译本;《决疑数学》是第一部概率论译本。在这些译着中,创造了许多数学名词和术语,至今还在应用,但所用数学符号一般已被淘汰了。戊戌变法以后,各地兴办新法学校,上述一些着作便成为主要教科书。 在翻译西方数学着作的同时,中国学者也进行一些研究,写出一些着作,较重要的有李善兰的《《尖锥变法解》《考数根法》;夏弯翔的《洞方术图解》《致曲术》《致曲图解》等等,都是会通中西学术思想的研究成果。 由于输入的近代数学需要一个消化吸收的过程,加上清末统治者十分腐败,在太平天国运动的冲击下,在帝国主义列强的掠夺下,焦头烂额,无暇顾及数学研究。直到1919年五四运动以后,中国近代数学的研究才真正开始。 近现代数学发展时期 这一时期是从20世纪初至今的一段时间,常以1949年新中国成立为标志划分为两个阶段。 中国近3年留日的冯祖荀,1908年留美的郑之蕃,1910年留美的胡明复和赵元任,1911年留美的姜立夫,1912年留法的何鲁,1913年留日的陈建功和留比利时的熊庆来(1915年转留法),1919年留日的苏步青等人。他们中的多数回国后成为着名数学家和数学教育家,为中国近现代数学发展做出重要贡献。其中胡明复1917年取得美国哈佛大学博士学位,成为第一位获得博士学位的中国数学家。随着留学人员的回国,各地大学的数学教育有了起色。最初只有北京大学1912年成立时建立的数学系,1920年姜立夫在天津南开大学创建数学系,1921年和1926年熊庆来分别在东南大学(今南京大学)和清华大学建立数学系,不久武汉大学、齐鲁大学、浙江大学、中山大学陆续设立了数学系,到1932年各地已有32所大学设立了数学系或数理系。1930年熊庆来在清华大学首创数学研究部,开始招收研究生,陈省身、吴大任成为国内最早的数学研究生。三十年代出国学习数学的还有江泽涵(1927)、陈省身(1934)、华罗庚(1936)、许宝騄(1936)等人,他们都成为中国现代数学发展的骨干力量。同时外国数学家也有来华讲学的,例如英国的罗素(1920),美国的伯克霍夫(1934)、奥斯古德(1934)、维纳(1935),法国的阿达马(1936)等人。1935年中国数学会成立大会在上海召开,共有33名代表出席。1936年《中国数学会学报》和《数学杂志》相继问世,这些标志着中国现代数学研究的进一步发展。 解放以前的数学研究集中在纯数学领域,在国内外共发表论着600余种。在分析学方面,陈建功的三角级数论,熊庆来的亚纯函数与整函数论研究是代表作,另外还有泛函分析、变分法、微分方程与积分方程的成果;在数论与代数方面,华罗庚等人的解析数论、几何数论和代数数论以及近世代数研究取得令世人瞩目的成果;在几何与拓扑学方面,苏步青的微分几何学,江泽涵的代数拓扑学,陈省身的纤维丛理论和示性类理论等研究做了开创性的工作:在概率论与数理统计方面,许宝騄在一元和多元分析方面得到许多基本定理及严密证明。此外,李俨和钱宝琮开创了中国数学史的研究,他们在古算史料的注释整理和考证分析方面做了许多奠基性的工作,使我国的民族文化遗产重放光彩。 1949年11月即成立中国科学院。1951年3月《中国数学学报》复刊(1952年改为《数学学报》),1951年10月《中国数学杂志》复刊(1953年改为《数学通报》)。1951年8月中国数学会召开建国后第一次全国代表大会,讨论了数学发展方向和各类学校数学教学改革问题。 建国后的数学研究取现代数学开始于清末民初的留学活动。较早出国学习数学的有:190得长足进步。50年代初期就出版了华罗庚的《堆栈素数论》(1953)、苏步青的《射影曲线概论》(1954)、陈建功的《直角函数级数的和》(1954)和李俨的《中算史论丛》(5辑,1954-1955)等专着,到1966年,共发表各种数学论文约2万余篇。除了在数论、代数、几何、拓扑、函数论、概率论与数理统计、数学史等学科继续取得新成果外,还在微分方程、计算技术、运筹学、数理逻辑与数学基础等分支有所突破,有许多论着达到世界先进水平,同时培养和成长起一大批优秀数学家。 60年代后期,中国的数学研究基本停止,教育瘫痪、人员丧失、对外交流中断,后经多方努力状况略有改变。1970年《数学学报》恢复出版,并创刊《数学的实践与认识》。1973年陈景润在《中国科学》上发表《大偶数表示为一个素数及一个不超过二个素数的乘积之和》的论文,在哥德巴赫猜想的研究中取得突出成就。此外中国数学家在函数论、马尔可夫过程、概率应用、运筹学、优选法等方面也有一定创见。 1978年11月中国数学会召开第三次代表大会,标志着中国数学的复苏。1978年恢复全国数学竞赛,1985年中国开始参加国际数学奥林匹克数学竞赛。1981年陈景润等数学家获国家自然科学奖励。1983年国家首批授于18名中青年学者以博士学位,其中数学工作者占2/3。1986年中国第一次派代表参加国际数学家大会,加入国际数学联合会,吴文俊应邀作了关于中国古代数学史的45分钟演讲。近十几年来数学研究硕果累累,发表论文专着的数量成倍增长,质量不断上升。1985年庆祝中国数学会成立50周年年会上,已确定中国数学发展的长远目标。代表们立志要不懈地努力,争取使中国在世界上早日成为新的数学大国。
参考
http://..com/question/52908297.html?si=1

3. 中国古代的数学用语是怎样的

以《九章算经》为例,节选其两条题目:


-----又有田广十二步,从十四步。问为田几何?答曰:一百六十八步。

方田指的是面积 ---- 你可以理解成计算田地的面积。

田,广12步,从14步 ---- 矩形,长12,宽14。

问田几何? ---- 几何在这里就是求面积的意思。

答:168步。 ---- 面积就是168,面积单位没有平方的概念,步乘以步,还是步。


下一题~


----- 今有共买犬,人出五,不足九十;人出五十,适足。问人数,犬价几何。

----- 答曰:二人,犬价一百。

----- 盈、适足,不足,适足术曰:以盈及不足之数为实。置所出率,以少减多,余为法。实如法得一人。其求物价者,以适足乘人数得物价。

第二题不一字一句了,我给你直接翻译成现代语:

问题是:买狗,每人出5元,差90元;每人出50元,刚刚好。问有多少人,买狗要?

(这里注意,问题没有问有多少只狗,也没有问狗单价,狗在这里就是一个整体,问的是买狗总共要多少钱)

答案是:有2人,狗总价100元。

答案解析,这里最麻烦:

指的是每人出多少钱,盈够了,刚刚好。

不足怎么办?按适足术算,适足术是《九章算经》前几章讲过的盈不足术

盈及不足之数为实。置所出率,以少减多,余为法。

盈的差值为,算所处率:用多减去少的,多余的为

盈(每人出多少钱)的差值是 50-5=45 这个45就是

所处率是 90-0=90 (多的是90,少的是那个刚刚足够,即为0) 这个90就是

实如法得一人。

每有一份实,相等,就有1人。其实就是用除以的意思。

90/45=2人。(2份=1份,所以是2人)

其求物价者,以适足乘人数得物价。

题目说每人给50元就刚刚好,我们算出共有2人。

50*2=100元。

得答案是2人买狗,买狗共需要100元。


这里可以看出,《九章算经》是1800年前的书,当时还没有假设代数方程的概念。

但是可以解出这种二元一次方程组的问题。

这种问题放到现在,设x,y就可以很快的解决。

1800年前的人不会方程,用“盈不足”的概念,以差值算出人数。

这在当时世界是很领先的,欧洲还停留在算乘除的阶段,中国已经开始有代数萌芽了。

4. 关于数学的资料

数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。

而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。

在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.

基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.

代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.

直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分.

现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……).

(4)中国用数学怎么表示什么意思扩展阅读:

数学分支

一、数学史

二、数理逻辑与数学基础a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理集合论 f:数学基础 g:数理逻辑与数学基础其他学科

三、数论

a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科

四、代数学

a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科

五、代数几何学

六、几何学

a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科

七、拓扑学

a:点集拓扑学 b:代数拓扑学 c:同伦论 d:低维拓扑学 e:同调论 f:维数论 g:格上拓扑学 h:纤维丛论 i:几何拓扑学 j:奇点理论 k:微分拓扑学 l:拓扑学其他学科

八、数学分析

a:微分学 b:积分学 c:级数论 d:数学分析其他学科

九、非标准分析

十、函数论

a:实变函数论 b:单复变函数论 c:多复变函数论 d:函数逼近论 e:调和分析 f:复流形 g:特殊函数论 h:函数论其他学科

十一、常微分方程

a:定性理论 b:稳定性理论 c:解析理论 d:常微分方程其他学科

十二、偏微分方程

a:椭圆型偏微分方程 b:双曲型偏微分方程 c:抛物型偏微分方程 d:非线性偏微分方程 e:偏微分方程其他学科

十三、动力系统

a:微分动力系统 b:拓扑动力系统 c:复动力系统 d:动力系统其他学科

十四、积分方程

十五、泛函分析

a:线性算子理论 b:变分法 c:拓扑线性空间 d:希尔伯特空间 e:函数空间 f:巴拿赫空间 g:算子代数 h:测度与积分 i:广义函数论 j:非线性泛函分析 k:泛函分析其他学科

十六、计算数学

a:插值法与逼近论 b:常微分方程数值解 c:偏微分方程数值解 d:积分方程数值解 e:数值代数 f:连续问题离散化方法 g:随机数值实验 h:误差分析 i:计算数学其他学科

十七、概率论

a:几何概率 b:概率分布 c:极限理论 d:随机过程 (包括正态过程与平稳过程、点过程等) e:马尔可夫过程 f:随机分析 g:鞅论 h:应用概率论 (具体应用入有关学科) i:概率论其他学科

十八、数理统计学

a:抽样理论 (包括抽样分布、抽样调查等 )b:假设检验 c:非参数统计 d:方差分析 e:相关回归分析 f:统计推断 g:贝叶斯统计 (包括参数估计等) h:试验设计 i:多元分析 j:统计判决理论 k:时间序列分析 l:数理统计学其他学科

十九、应用统计数学

a:统计质量控制 b:可靠性数学 c:保险数学 d:统计模拟

二十、应用统计数学其他学科

二十一、运筹学

a:线性规划 b:非线性规划 c:动态规划 d:组合最优化 e:参数规划 f:整数规划 g:随机规划 h:排队论 i:对策论 亦称博弈论 j:库存论 k:决策论 l:搜索论 m:图论 n:统筹论 o:最优化 p:运筹学其他学科

二十二、组合数学

二十三、模糊数学

二十四、量子数学

二十五、应用数学 (具体应用入有关学科)

二十六、数学其他学科

5. 中国数学和西方数学的区别是什么我们如何处理

西方数学的主要内容是证明定理,而中国数学(侧重于古代)主要内容是解方程,解决各式各样的问题,着重计算,要把计算的过程,方法,步骤说出来.
中国古代数学的精髓是从问题出发,和西方的从公理出发完全不一样.或者说,中国的古代数学是一种算法的数学,也就是一种计算机数学.从这个意义上说,我们最古老的数学,却是计算机时代最适合,最现代化的数学.

6. 数学中代表什么意思

数学中代表,表示特定的意思,一般情况下不太会用到,但用在数学题中一般都是求这个数。

数学中代表一种定义新运算符号,它可以是加,减,乘,除,乘方,开方等运算符号。事实上,数学所锻炼的是人的思维,逻辑思维,抽象能力,而数学的一步一步发展,就是从有实际作用变得越来越脱离实际的过程。

古时候中国的九章算术,其中内容都是有价值的,比如说分田,比如说建造城墙所用的土的体积。所以说古代数学仅仅停留在算学上,计算系统是一天比一天强,但是整体却进步不大。

阅读全文

与中国用数学怎么表示什么意思相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:735
乙酸乙酯化学式怎么算 浏览:1399
沈阳初中的数学是什么版本的 浏览:1344
华为手机家人共享如何查看地理位置 浏览:1037
一氧化碳还原氧化铝化学方程式怎么配平 浏览:879
数学c什么意思是什么意思是什么 浏览:1403
中考初中地理如何补 浏览:1293
360浏览器历史在哪里下载迅雷下载 浏览:695
数学奥数卡怎么办 浏览:1382
如何回答地理是什么 浏览:1018
win7如何删除电脑文件浏览历史 浏览:1050
大学物理实验干什么用的到 浏览:1479
二年级上册数学框框怎么填 浏览:1694
西安瑞禧生物科技有限公司怎么样 浏览:958
武大的分析化学怎么样 浏览:1243
ige电化学发光偏高怎么办 浏览:1332
学而思初中英语和语文怎么样 浏览:1645
下列哪个水飞蓟素化学结构 浏览:1420
化学理学哪些专业好 浏览:1481
数学中的棱的意思是什么 浏览:1053