⑴ 数学的魅力及为什么要学习数学
数学至今魅力不减是因为 ,一是数学理论一经确立,基本上不会被推翻,以后只是深化和推广而已,不象其它自然科学分支经常发生新理论取代旧理论的现象。二是它的高度抽象性使它居于比自然界及至其他自然科学更高的层次,自然规律和谐用数学结构表示出来时,已经抓住了最本质的特征,由“形似”到了“神似”的地步。数学史的魅力在于,它是人类文明史中一个非常重要的部分,波澜壮阔,源远流长,奔腾不息。它博精深,令人临川浩叹:“逝者如斯夫!”它精英荟萃。令人心驰神往:“大江东去,浪淘尽千古风流人物”它是数学与哲学、历史等学科的综合,在这个意义上说,它也是最早的边缘科学、交叉科学之一。数学无处不在,我们更赞叹的是它的奇妙和独特——数学魅力。
在我们自然界中的形式美如:
(1)累积状之美。如崇山峻岭、花丛灌木。
(2)射线状之美。如日月星辰的光芒,孔雀开屏的尾羽。
(3)回旋状之美。如蜗壳、螺壳。
(4)对称状之美。如雪花、晶体。
(5)排列状之美。如鱼鳞、鸟羽。
(6)网目状之美。如龟甲、叶脉。
(7)斑文状之美。如虎皮、豹皮。
(8)平行线之美。如垂柳、雨丝。
在我们几何图形中的形式美如 :
(1)圆。人类的知觉对简单的圆形是偏爱的。其原因在于它的绝对完美性,和谐、稳定,使人称心舒畅,在心理上达到满足的最佳状态。
(2)抛物线。阿基米得在名着《抛物线的求积》中,利用力学和穷竭法,算出物弓形的面积,是微积分思想的先导。他还巧妙地用抛物线帮助作出正七边形。
(3)椭圆和双曲线。这两种圆锥截线也是后来在天体力学中找到了应用。古代希腊有椭球面音乐厅,乐队配置在个焦点的位置处,以得到良好的声音反射效果。比例美。即我们常常说的“黄金分割”。这是大家很熟悉的。公式美。数学公式的丛林、公式的海洋。公式是智慧的结晶、公式是简练的语言,因此,它给人们的印象是睿智、简洁、浩瀚。数字美。如
99 =9801
999 =998O01
9999 =99980001
99999 =99998000O1
三、数学应用及数学美
数学在其它学科中的应用不仅是相互爱好,主要还是相互需要。
l、数 学在音乐中的应用。
例如我国春秋时用 “三分损益法”确定弦长与音的关系,就是在基音弦上去一分 (即乘以 2/3)或加一分(即乘以 4/3)以定另一律的弦长,依此类推,直到“高八度”或“低八度”。这方法是近似的。
2、数学在绘画中的应用。
达 •芬奇在着作中多处记有作透视图的例子,他最早谈到远景的比例,给全景透视奠定了基础,解释了立体视感的原因,提出了阴影分割理论、反射的特性和物体色彩变化。
3、数学在雕塑中的应用。
被尊为男性美典范的别尔维杰尔的阿波罗雕像为标准,人们发现它的腰部、膝盖、喉结 、面部、手臂等处都是“黄金分割”点。我国古代雕塑有独特的风格 ,其中一些小巧的玩意闪烁着数学的智慧,例如由六块小木头雕成而能拼接为空间十字形的组合件,被外国人称 为 “中国益智玩具”,由于其别出心裁的构思和外形,显得很美。
4、数学在建筑中的应用。
约纪元前2700年的古埃及第四王朝法老胡夫的吉萨金字塔,由260万块重达 l2吨的巨石堆成,石块之间只有几丝的缝隙,高150米,重约 3100万吨,真是难以置信的成就。建筑的数学美表现在比例上,它无需真正去丈量,立即就因其和谐协调而在人们的心灵上激起美感。
5、数学在诗歌中的应用。
如 : 日啖荔枝三百颗,不辞长作岭南人。 (苏 轼)
锦瑟无端五十弦,一弦一柱思华年。 (李商隐)
我国着名诗人闻一多,曾经倡导过新诗的格律,他的多种尝试,有人形容为一种建筑美 ,其实是一种数学美。句式、字数、行数的变化。无一不是可以数量化的。而且,其实是对称、均衡、周期等要素,也隐含数学概念,这方面的探索应当说是有益的。
6、数学在抽象艺术中的应用。
例如,分数维曲线已经引起气象学家、地震学家、宇宙学家的浓厚兴趣,事实上在地质学 、地理学、电工学、语言学、经济学、空气动力学乃至数学学科本身都找到了应用,分数维曲线显示的乐曲也很动听。
7、数学在现实生活中的应用。
例如,在我国,个人的劳动收入多少是与个人所做贡献的大小成 比例的 。中国有句俗语是 : “一分钱 ,一分货”。看来这只是一种经济关系,但其中却隐含了数学概念。假如没有数学上的量的话,我想大家也不会在“量”的“得失”上而斤斤计较了,可数就是 数,“l”就是“l”,“2”就是 “2” 。
8、数学成就了计算机“风行天下”
计算机中的“二进制”“十进制”都是人工智能的杰作,人们将最胖的数“0”和最瘦的数“l”进 行排列、组合造就了一代代“计算机英雄”。人们的生活变得方便、快捷了,毫无疑问,数字化时代是目前最先进的“时代”。
四、数学思想助我设计出圆形元素周期表
我将化学元素放人到数学坐标系中,经过多次的排列,最后得到一张“圆形元素周期表 ”。即坐标中第一、第二象限是主族元素;第三、第四象限是副族元素和第Ⅷ族元素,横轴 (x轴)将主族元素同过渡元素分开,这样,所得到的周期表比现用的周期表更紧凑、更直观、更美观、使用更方便。其规律性在国际上可以通用。 (详情见附录 1、附录 2) 我 只是将数学思想同化学学科相结合,便有了更新的发现。看来,数学 的每一个特征都使人为之仰慕倾心。我们看它具有如此丰富多彩的外貌而击节称赏,并愿意做 出更多的美的发现。
总之 ,在我的眼里 ,数学比任何学科的价值都要大,再加上它具有独特的魅力吸引着我,令我不得不为之倾心。其实,在数学方面 ,我根本就没有什么发言权,只是曾在数学思想方面尝到了一点 “甜头”。在此,我只是有感而发,学好数学不仅能提高个人的情商,即个人对科学的情感、态度和价值观。从过去的发展史可以看出,中国最早得到世界绝对一流研究成果的,也是在数学方面。华罗庚、陈景润就是证明。我在本论文中也举出了大量的例证,可以充分说明数学真的是魅力无穷,我们不仅要对数学产生浓厚的兴趣,更应对其威力拥有坚强的信念。让我们大力宏扬与时俱进,开拓创新的精神,将个人的智慧运用到人类社会当中去,为人类社会的发展贡献自己的力量。
⑵ 为什么我们要学习数学
人为什么要学数学?其实很多人并不清楚,甚至存在许多认识误区。有学生认为,“数学除了买东西的时候有点用,考试的时候有点用,没有多大的实际用途。”还有学生认为,“学数学一切为了高考,没有高考就没有人会学这些没有用的东西。”其实,数学是一个意义的领域。
1、数学意义——科学的立场
数学一直是形成人类文化的主要力量,通过数学这面镜子可以了解一个时代的特征。古希腊数学家强调严密的推理,他们关心的并不是这些成果的实用性,而是教育人们去进行抽象的推理,激发人们对理想和美的追求。所以,古希腊创造了后世很难超越的优美文学,理性化的哲学,以及理想化的建筑与雕刻。中国古代数学崇尚实用,最大的缺点是缺少严格求证的思想。“数学和各种科学假说的数学化已经成为近代科学的脊梁骨”。一个时代的特征与这个时代的数学活动密切相关。17世纪以来,由于微积分的创立,借助微积分工具在寻求自然规律方面所取得的成功远远超出了天文学的领域。19 世纪,由于把微积分这个工具改进为严格的分析体系,使数学物理强有力的理论成为可能,最终导致了量子力学、相对论的诞生,使人们对物质和空间的基本性质有更深的了解。20 世纪 50 年代,数学的发展创造了计算机,数学从科学的幕后走向台前,数字化深入到了人类几乎所有的活动。
数学能像音乐一样,给人以巨大的心灵震撼。罗素在自传中这样写道:“我 11 岁时,我开始学习欧几里得几何学,哥哥做我的老师,这是我生活中的一件大事,就像初恋一样令人陶醉。我从来没有想象到世界上还有如此美妙的东西。”在人们的印象中,数学与艺术很少有共同之处,虽然它们都是人类智慧的结晶。然而,数学始终默默地伴随着艺术,为它提供丰富的灵感之源和坚实的创作支柱。数学能产生艺术的灵感,艺术也能使数学产生灵感。从斐波那契数列和圆周率的小数位数字,到四面体和麦比乌斯带,都可以作为艺术家创作的灵感。音乐是人类精神通过无意识计算而获得的愉悦享受。法国数学家傅立叶证明了:所有的声音,无论是噪音还是仪器发出的声音,复杂的还是简单的声音,都可以用数学方式进行全面的描述。傅立叶的证明具有深刻的哲学意义。美妙的音乐以令人意想不到的美妙方式得到了数学描述,从而,艺术中最抽象的领域能转换成最抽象的科学;而最富有理性的学问,也有合乎理性的音乐与其密切相联。所以,数学是推理中的音乐,而音乐则是感觉中的数学。数学和建筑间的紧密联系应该没有什么可惊奇的。数学一直是建筑师们取之不尽用之不竭的创造源泉,是建筑设计与创新的宝贵工具。
不仅自然科学,各门社会科学也同样地不断求助于数学。随着数学与其它科学之间关系的更深入的揭示,数学又获得了一种新的称谓——伙伴。美国数学家斯蒂恩对数学与其它学科作了这样的比喻:许多有学问的人,特别是科学家和工程师,把数学想象成一棵知识之树,公式、定理和结论就像挂在树上的成熟的果实,让路过的科学家采摘,用以丰富他们的理论。数学家则与之相反,他们视数学如迅速生长的热带雨林,需要从数学之外的世界吸取养分,同时它又奉献给人类文明丰富的、变化无穷的智慧动植物。数学对其它学科做出了许多贡献,同时,这些学科正用一些有趣的新型问题向数学家发出了挑战,这些问题又导致了新的应用,且越基本的数学其用处更广。可以想象,随着人类社会的发展,数学会成为最基本的学科,会成为所有科学的框架。如果采用后现代谚语来说,就是几乎没有什么东西能够避开数学的“文本”。可以说,如果我们的世界里数学突然被抽走,人类社会将顷刻崩溃;如果我们的世界里数学被冻结,人类文明将即刻倒退。没有数学的文明是不可以想象的。
2、数学意义——教育的立场
学作为人的基本素质,在古希腊社会尤其明显。希腊哲人以知识为善,追求真善美乃是希腊教的宗旨。柏拉图认为数学是具备公民资格的前提,人的灵魂受到数学的陶冶之后,就有可能超凡脱俗,回到圣洁至上的理念世界而得到拯救。接受训练而能以逻辑和数学进行推理的人,将更有可能逃出无知的洞穴。数学不仅是人的基本素质,数学还能提升智能,增进才能。柏拉图认为,那些天性擅长算术的人,往往也敏于学习其它一切学科;而那些反应迟缓的人,如果受了算术的训练,他们的反应也总会有所改善。柏拉图特别强调,几何学中高深的东西能够帮助人们较为容易地把握善的理念。不知道基本的数学语言,不理解基本的数学符号,不掌握基本的数学推理,不懂得基本统计图表,这样的人将不能适应现代社会的快速发展。在信息社会,数学作为现代人的基本素质,已经越来越被人们所认识。数学以它的思维性、理性精神和优美性成为当今社会文化中的一个基础组成部分。可以说,没有数学,我们几乎不能很好地生活;没有数学,我们几乎不能很好地工作;没有数学,我们几乎不能很好地思考;没有数学,我们几乎不能很好地交流;没有数学,我们几乎不能很好地欣赏。
通过数学的学习,“能够促进学生的学习态度、思维习惯、思维模式、思维策略等的发展,让每个学生面对全新的情景都能做出适当的回应”。传统实证主义知识观将知识描述成线性积累和价值中立,忽略知识创造中人的活动,忽视知识所蕴涵的伦理意义。然而,知识本质上是一种社会建构,它必然体现人的价值选择,表现人的伦理关怀。数学也不例外,对于数学来说,它可以促进人的下列优秀品质的形成。
第一,诚实正直,崇尚真理。计算、证明并不是一个简单的操作步骤或形式化过程,而是一系列的观点与洞察。数学结论对任何人都一样,必须接受理性法庭的裁决,对就是对,错就是错。数学计算、数学演绎、数学证明都不能靠投机取巧,而只能靠一步一步的计算与推理。通过数学的学习,可以培养诚实正直、以理服人、坚持真理、有错就改的优良品格。
第二,勤于思考,勇于创新。要启发人类这种独有的、高贵的创新能力,莫过于数学。没有哪一门学科能像数学这样集中、加速和强化人们的注意力。事实证明,数学家的成功并不在于他们的天赋有多高,而主要取决于他们的勤奋和创新。
第三,坚韧不拔,敢于攀登。几何中没有王者之路,数学研究需要有坚强的毅力。因为数学命题的证明犹如登山,只有那些坚忍不拔、勇于探索的人,才能达到胜利的彼岸。数学是一所优秀的思维学校,数学是一门睿智的训练学科,数学是一种抽象的思维模式。精确的数学语言让我们有条不紊地思考复杂的决策,而不是只凭轶事、猜测和雄辩。学习数学的人更能有效地进行思维,发展人的思维能力是数学重要的文化功能,没有数学就不会有有组织的逻辑思维。数学能使人们的思维方式严格化,养成有步骤地进行推理的习惯。
数学是打开机会大门的钥匙。数学不仅是科学的语言,而且以直接的方式为商业、财政、经济、国防做出贡献,为学生打开职业的大门。一个人懂得的数学越多,就会有更多的职业之门向他开放。今天,那些理解数学并且能做数学的人,将比那些不懂数学的人获得更多的机会。从保险公司统计员、系统分析家、营销专家、网络管理人,到金融分析家,等等。实际上,数学历来都在帮助教育当局甄别哪些学生应该得到社会的报酬这一点上起到重要的作用。在某种程度上,数学水平和能力的不同决定了一个人将来从事的职业和发展前景。在未来世界中,求职和晋升的最好机会将提供给那些有信心应付数学的人,作为科学和技术的基础,数学提供通向成功的钥匙。信息时代就是数学的时代,正如未来的科学家和工程师需要广泛的数学一样,未来的公民将需要极其多样的数学,以对付工作中大量以数学为基础的工具、设备和技术。当学生离开学校并进入工作生涯时,数学极大地决定了一个人能从事什么样的工作与不能从事什么样的工作。
在世界上所有的国家中,中小学的数学课程内容较为一致,具有突出的相似性。具体地说,各国选取的数学课程内容与社会的需求、数学的发展以及学生的发展密切相关。数学在课程中占据中心位置,在不同的国家或文化中,没有任何一门其它学科的教育时间有数学这样长。我们很少看到数学学得好而其它学科学得不好的学生。在中学里很少有这样的情况,即某个学生在数学上是第一名,而在其它学科上却属于最差的行列。反之,那些所谓“差生”,往往首先就是数学没有学好,数学对于这些学生而言竟然成了“筛子”。筛掉了他们的就业机会,筛掉了他们的发展机会。数学真正成了打开通向未来的大门,每个人的发展都依赖于数学教育的成功。在所有文明中,一代又一代的儿童学习数学以获得更加美好的生活。
3、对数学教育的启示
在数学课程改革的背景下,我们为什么要学习数学?数学对学生的发展意味着什么?数学到底要塑造学生什么?数学到底能塑造学生什么?这些问题看似平凡,实则非凡;看似简单,实则复杂;看似浅显,实则深远。其实,每个问题都是我们教育工作者必须弄清的数学教育哲学的基本问题。事实表明,无论是从人类文明的发展来看,还是从学生个人的发展来说,数学是一个不容忽视的意义的领域。数学是人类最高超的智力成就,是人类心灵最独特的创造,是人类文明的核心部分。数学是了解世界及其发展的主要钥匙之一。作为人类文明发展标志的数学,在人的发展中扮演着重要的角色。数学已成为个人参与社会的基本条件,每个人都需要学习数学。数学应该走进学生的生活世界,成为每个学生生活的组成部分,激发他们对生活的热爱,体现更多的人文关怀。数学应该促进学生的发展,震撼学生心灵,培养学生的好奇心,体现数学的文化价值。数学应该发展学生的能力,体现数学的思维价值。数学应该培养学生对美的追求,体现数学的艺术价值。从而,数学教学不是把数学各个领域的片段知识灌输给学生,不是把数学作为一个封闭系统,从那些完美的数学结论开始,而是从学生熟悉的现实生活、已有的数学经验开始,把数学作为一项人类的基本活动。应该少些强制,少些令人厌恶的机械训练。让学生思考!思考!再思考!教师不是为考试而教,学生不是为考试而学。数学不是无意义的符号,数学不是无意义的公式游戏,数学不是无意义的运算和推理。数学是一个意义的领域,数学并非虚无飘渺,其中萌动着思想的生命。今天,数学教育中的种种困惑与迷茫,都与数学意义的失落密切相关。走向意义的数学教育是时代的呼唤。在这里,数学意义不是一个逻辑概念,而是被理解为生命的表现。数学意义不是从文本中提炼出来的,而是从对话中创造出来的。数学意义蕴涵在运算和推理中,蕴涵在每一个数学概念的学习中,蕴涵在每一个数学定理的探究中,蕴涵在每一个数学问题的研究中。走向意义的数学教育要给每一个学生一片阳光,唤醒他们的心灵,成为学生难忘的人生经历。它让学生领略现代数学思想中令人鼓舞的概念,像夏天喝冰水那样令人清新。它让学生欣赏数学,感受数学定理与数学概念的美妙,像艺术那样令人振奋。它让学生发现优美定理、概念的形成过程创造出更有内涵、更有意义的数学文化,像呼吸那样顺乎自然。在数学教育中,当做题、考试、成绩成为数学教育关注的焦点时,数学就变成了一种无意义的诸多公式、定义、过程的罗列,数学意义——无论是科学意义还是教育意义——就离我们远去。然而,远离了意义的数学教育,也就从根本上远离了学生的生活。从而将数学知识局限于认识论的窠臼,片面强调数学知识的客观性、抽象性和确定性,遮蔽了数学知识所蕴涵的意义世界。所以,数学教育必须超越抽象的世界、符号的世界、逻辑的世界、知识的世界、绝对真理的世界以及升学工具的世界,迈向意义的世界。可以说,回归数学意义是每一个数学教育工作者神圣的使命。走向意义的数学教育理所当然应该成为新的教育方向,新的教育追求。
⑶ 为什么数学在物理学里那么有用
如果是中学物理的话还好,毕竟数学是物理的工具学科。
如果是高等物理就完全不一样了,物理学的绝大多数理论的建立过程是——发现现象——实验探索原因——得到结论——把结论表达成数学表达式——阐述观点和解释其他现象。
因为生活中的物理现象太多了,不可能根据现象来归类,但是如果利用数学公式对其进行整理的话就简单得多,比如无论是什么力给与的加速度在经典力学里面就可以用F=ma来表示和初步计算,如此严谨和科学性的多。
所以数学在高等物理的理论中非常重要,这也是为什么许多数学理论是物理学家发现的原因,例如”微积分“的发明者是物理学家牛顿。所以,物理学家一定也是数学家。
⑷ 为什么数学那么重要
.什么是数学
数学是研究现实世界空间形式和数量关系的一门科学.分为初等数学和高等数学.它在科学发展和现代生活生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.
数学符号的引入
六.数学与文化
数学的文化价值
一、数学是哲学思考的重要基础
数学在科学、文化中的地位,也使得它成为哲学思考的重要基础。历史上哲学领域内许多重要论争,常常牵涉到有关对数学的一些根本问题的认识。我们思考这些问题,有助于正确认识数学,正确理解哲学中有关的争论。
(一)数学——-根源于实践
数学的外在表现,或多或少人的智力活动相联系。因此在数学和实践的关系上,历来有人主张数学是“人的精神的自由创造”,否定数学来源于实践其实,数学的一切发展都不同程度地归结为实际的需要。从我国殷代的甲骨文中,就可以看到那时我们的祖先已经会使用十进制计数方法他们为适应农业的需要,将“十干”和“十二支”配成六十甲子,用以记年、月、日,几千年的历史说明这种日历的计算方法是有效的。同样,由于商业和债务的计算,古代的巴比伦人己经有了乘法表、倒数表,并积累了许多属于初等代数范畴的资料。在埃及,由于尼罗河泛滥后重新测量土地的需要,积累了大量计算面积的几何知识。后来随着社会生产的发展,特别是为适应农业耕种与航海需要而产生的天文测量,逐渐形成了初等数学,包括当今我们在中学里学习到的大部分数学知识。再后来由于蒸汽机等机械的发明而引起的工业革命,需要对运动特别是变速运动作更精细的研究,以及大量力学问题出现,促使微积分在长期的酝酿后应运而生。20世纪以来近代科学技术的飞速发展,使数学进入一个空前繁荣时期。在这个时期数学出现了许多新的分支:计算数学,信息论,控制论,分形几何等等。总之,实践的需要是数学发展的最根本的推动力。
数学的抽象性往往被人所误解。有些人认为数学的公理、公设、定理仅仅是数学家头脑思维的产物。数学家靠一张纸、一支笔工作,和实际没有什么联系。
其实,即使就最早以公理化体系面世的欧的几里德几何而言,实际事物的几何直观和实践中人们发展的现象,尽管不合乎数学家公理化体系的各式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他伯头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会成为无源之水,无本之木。
其实,即使就最早以公理化体系面世的欧几里德几何而言,实际事物的几何直观和实践中人们发现的现象,尽管不合乎数学家公理化体系的程式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他的头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受过严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会变成无源之水,无本之木。
但是,数学理性思维的特点,使它不会满足于仅研究现实的数量关系和空间形式,它还努力探索一切可能的数量关系和空间形式。在古希腊时期,数学家就超越了在现实有限尺度精度内度量线段的方法,觉察到了无公度量线段的存在,即无理数的存在。这其实是数学中最困难的概念之一—连续性、无限性的问题。直到两千年以后,同样的问题导致极限理论的深入研究,大大地推动了数学的发展。试想今天如果还没有实数的概念,我们将面临怎样的处境。这时人们无法度量正方形对角线的长度,也不会解一元二次方程:至于极限理论与微积分学更不可能建立即使人们可以像牛顿那样应用微积分,但是在判断结论的真实性时会感到无所适从。在这种状况下,科学技术还能走多远呢?又如在欧几里德几何产生时,人们就对其中一个公设的独立性产生怀疑。到19世纪上半叶,数学家改变这个公设,得到了另一种可能的几何一一非欧几里德几何。这种几何的创立者表现了极大的勇气,因为这种几何得出的结论从“常理”来说是非常“荒唐”的。例如“三角形的面积不会超过某一个正数”。现实世界似乎没有这种几何的容身之地。但是过了近一百年,在物理学家爱因斯坦发现的相对论中,非欧几里德几何却是最合适的几何。再如,20世纪30年代哥德尔得到了数学结论不可判别性的结果,其中的某些概念非常抽象,近几十年却在算法语言的分析中找到了应用。实际上,许多数学在一些领域或一些问题中的应用,一旦实践推动了数学,数学本身就会不可避免地获得了一种动力,使之有可能超出直接应用的界限。而数学的这种发展,最终也会回到实践中去。
总之,我们应该大力提倡研究和当前实际应用有直接联系的数学课题,特别是现实经济建设中的数学问题。但是我们也应该在纯粹科学和应用科学之间建立有机的联系,建立抽象的共性和丰富多彩的个性之间的平衡,以此来推动整个科学协调地发展。
(二)数学—充满了辩证法由于数学严密性的特点,很少有人怀疑数学结论的正确性。相反,数学的结论往往成为真理的一种典范。例如人们常常用“像一加一等于二那么确定”来表示结论不容置疑。在我们的中小学的教学中,数学更是只准模仿、演练、背诵。数学真的是万古不变的绝对真理吗?
事实上,数学结论的真理性是相对的即使像1+1=2这样简单的公式,也有它不成立的地方。例如在布尔代数中,1+1=0!而布尔代数在电子线路中有广泛的应用。欧几里德几何在我们的日常生活中总是正确的,但在研究天体某些问题或速度很快的粒子运动时非欧几何却是适宜的。数学其实是非常多样化的,它的研究范围也随着新问题的出现而不断扩大。如同一切科学一样,数学家们如果死守着前辈的思想、方法、结论不放,数学科学就不会进步。把数学的严密性和公理化体系看作一种“教条”是错误的,更不能像封建时代的文人对待孔夫子说的话:“真理”已经包含在圣人说过的话里,后人只能对其作诠释。数学发展的历史可以证明,正是数学家特别是年轻数学家的创新精神,敢于向守旧的思想挑战,数学的面貌才得以不断地更新,数学才成长为今天这样一门蓬勃发展、富有朝气的学科。
数学的公理化体系从来也不是不容怀疑、不容变化的“绝对真理”欧几里德的几何体系是最早出现的数学公理化体系,但从一开始就有人怀疑其中的第五公设不是独立的,即该公设可以从公理体系的其他部分推出。两千多年来人们一直在寻找答案,终于在19世纪由此发现了非欧几何。虽然人们长时期受到欧几里德几何的束缚,但是最终人们还是接受了不同的几何公理体系。如果历史上某些数学家多一点敢于向旧体系挑战的革新精神,非欧几何也许还可能早几百年出现
数学公理化体系反映了内部逻辑严密性的要求。在一个学科领域内,当有关的知识积累到一定程度后,理论就会要求把一堆看来散乱的结果以某种体系的形式表现出来。这就需要对己有的事实再认识、再审视、再思索,创造新概念、新方法,尽可能地使理论能包括最一般、最新发现的规律。这实在是一个艰苦的理论创新过程。数学公理化也一样,它表示数学理论已经发展到了一个成熟的阶段,但并不是认识一劳永逸的终结。现有的认识可能被今后更深刻的认识所代替,现有的公理也可能被今后更一般化、包含更多事实的公理体系所代替。数学就在不断地更新过程中得到发展。
有种看法以为,应用数学就是把熟诵的数学结论套到实际问题上去,以为中小学的教学就是教给学生这些万古不变的教条。其实数学的应用极充满挑战性,一方面不但需要深切地认识实际问题本身,另一方面要求掌握相关数学知识的真谛,更重要的是要求能创造性地把两者结合起来。
就数学的内容来说,数学充满了辩证法。在初等数学发展时期,占统治地位的是形而上学。在该时期的数学家或其他科学家看来,世界由僵硬的、不变的东西组成。与此相适应,那时数学研究的对象是常量,即不变的量。笛卡尔的变数是数学中的转折点,他把初等数学中完全不同的两个领域一一几何和代数结合起来,建立了解析几何这个框架具备了表现运动和变化的特性,辩证法因此进入了数学。在此后不久产生的微积分抛弃了把初等数学的结论作为永恒真理的观点,常常做出相反的判断,提出一些在初等数学的代表人物看来完全不可理解的命题。数学走到了这样一个领域,在那里即使很简单的关系,都采取了完全辩证的形式,迫使数学家们不自觉又不自愿地转变为辩证数学家。在数学研究的对象中,充满了矛盾的对立面:曲线和直线,无限和有限,微分和积分,偶然和必然,无穷大和无穷小,多项式和无穷级数,正因为如此,马克思主义经典作家在有关辩证法的论述中经常提到数学。我们学一点数学,一定会对体会辩证法有所帮助。
7.数学占考试的分值
中考(江苏):
语文,满分150
数学,满分150
英语,满分130
物理,满分100
化学,满分100
历史,满分50
政治:满分50
体育,满分40
高考:
语文 150
数学 150
英语 150
文综(理综)300
总分 750
由此可见,数学无论是在生活与学习中都有重大的作用。
1.参考文献:
网络词条“数学”
http://ke..com/link?url=_
2.数学成绩计入文化考试总分
http://news.artxun.com/jingdezhentaoci-1282-6406456.shtml
3.网络“数学与文化”词条
http://ke..com/link?url=pMPMrsPNHIIqNCNdzCy-zwcKT-ccIxgIQ6itzYTYh_ZirDhpZnUYQ_h0ewDB7m1ke8F589QyTzQ1Yvu_yjfweK
请广大读者阅读参考