导航:首页 > 数字科学 > 什么叫做小学数学应用题

什么叫做小学数学应用题

发布时间:2023-03-15 10:15:47

① 小学数学的应用题类型

小学数学的应用题类型汇总

应用题是指将所学知识应用到实际生活实践的题目,在数学上,应用题分两大类:一个是数学应用。另一个是实际应用。我整理的小学数学的应用题类型,供参考!

一、一般应用题

一般应用题没有固定的结构,也没有解题规律可循,完全要依赖分析题目的数量关系找出解题的线索。

要点:从条件入手?从问题入?

从条件入手分析时,要随时注意题目的问题

从问题入手分析时,要随时注意题目的已知条件。

例题如下:

某五金厂一车间要生产1100个零件,已经生产了5天,平均每天生产130个。剩下的如果平均每天生产150个,还需几天完成?

思路分析:

已知“已经生产了5天,平均每天生产130个”,就可以求出已经生产的个数。

已知“要生产1100个机器零件”和已经生产的个数,已知“剩下的平均每天生产150个”,就可以求出还需几天完成。

二、典型应用题

用两步或两步以上运算解答的应用题中,有的题目由于具有特殊的结构,因而可以用特定的步骤和方法来解答,这样的应用题通常称为典型应用题。

(一)求平均数应用题

解答求平均数问题的规律是:

总数量÷对应总份数=平均数

注:在这类应用题中,我们要抓住的是对应,可根据总数量来划分成不同的子数量,再一一地根据子数量找出各自的份数,最终得出对应关系。

例题一如下:

一台碾米机,上午4小时碾米1360千克,下午3小时碾米1096千克,这天平均每小时碾米约多少千克?

思路分析:

要求这天平均每小时碾米约多少千克,需解决以下三个问题:

1、这一天总共碾了多少米?(一天包括上午、下午)。

2、这一天总共工作了多少小时?(上午的4小时,下午的3小时)。

3、这一天的总数量是多少?这一天的总份数是多少?(从而找出了对应关系,问题也就得到了解决。)

(二)归一问题

归一问题的题目结构是:

题目的前部分是已知条件,是一组相关联的量;

题目的后半部分是问题,也是一组相关联的量,其中有一个量是未知的。

解题规律是,先求出单一的量,然后再根据问题,或求单一量的几倍是多少,或求有几个单一量。

例题如下:

6台拖拉机4小时耕地300亩,照这样计数,8台拖拉机7小时可耕地多少亩?

思路分析:

先求出单一量,即1台拖拉机1小时耕地的亩数,再求8台拖拉机7小时耕地的亩数。

(三)相遇问题

指两运动物体从两地以不同的速度作相向运动。

相遇问题的基本关系是:

1、相遇时间=相隔距离(两个物体运动时)÷速度和。

例题如下:两地相距500米,小红和小明同时从两地相向而行,小红每分钟行60米,小明每分钟行65米,几分钟相遇?

2、相隔距离(两物体运动时)=速度之和×相遇时间

例题如下:一列客车和一列货车分别从甲乙两地同时相对开出,10小时后在途中相遇。已知货车平均每小时行45千米,客车每小时的速度比货车快20﹪,求甲乙相距多少千米?

3、甲速=相隔距离(两个物体运动时)÷相遇时间-乙速

例题如下:一列货车和一列客车同时从相距648千米的两地相对开出,4.5小时相遇。客车每小时行80千米,货车每小时行多少千米?

相遇问题可以有不少变化。

如两个物体从两地相向而行,但不同时出发;

或者其中一个物体中途停顿了一下;

或两个运动的物体相遇后又各自继续走了一段距离等,都要结合具体情况进行分析。

另:相遇问题可以引申为工程问题:即工效和×合做时间=工作总量

三、分数和百分数应用题

分数和百分数的基本应用题有三种,下面分别谈一谈每种应用题的特征和解题的规律。

(一)求一个数是另一个数的百分之几

这类问题的结构特征是,已知两个数量,所求问题是这两个量间的百分率。

求一个数是另一个数的百分之几与求一个数是另一个数的几倍或几分之几的实质是一样的,只不过计算结果用百分数表示罢了,所以求一个数是另一数的百分之几时,要用除法计算。

解题的一般规律是:设a、b是两个数,当求a是b的百分之几时,列式是a÷b。解答这类应用题时,关键是理解问题的含意。

例题如下:

养猪专业户李阿姨去年养猪350头,今年比去年多养猪60头,今年比去年多养猪百分之几?

思路分析:

问题的含义是:今年比去年多养猪的头数是去年养猪头数的百分之几。所以应用今年比去年多养猪的头数去÷去年养猪的头数,然后把所得的结果转化成百分数。

(二)求一个数的几分之几或百分之几

求一个数的几分之几或百分之几是多少,都用乘法计算。

解答这类问题时,要从反映两个数的倍数关系的那个已知条件入手分析,先确定单位“1”,然后确定求单位“1”的几分之几或百分之几。

(三)已知一个数的几分之几或百分之几是多少,求这个数

这类应用题可以用方程来解,也可以用算术法来解。

用算术方法解时,要用除法计算。

解答这类应用题时,也要反映两个数的倍数关系的已知条件入手分析:

先确定单位“1”,再确定单位“1”的几分之几或百分之几是多少。

一些稍难的应用题,可以画图帮助分析数量关系。

(四)工程问题

工程问题是研究工作效率、工作时间和工作总量的问题。

这类题目的特点是:

工作总量没有给出实际数量,把它看做“1”,工作效率用来表示,所求问题大多是合作时间。

例题如下:

一件工程,甲工程队修建需要8天,乙工程队修建需要12天,两队合修4天后,剩下的任务,有乙工程队单独修,还需几天?

思路分析:

把一件工程的工作量看作“1”,则甲的工作效率是1/8,乙的工作效率是1/12。

已知两队合修了4天,就可求出合修的工作量,进而也就能求出剩下的工作量。

用剩下的工作量除以乙的工作效率,就是还需要几天完成。

四、比和比例应用题

比和比例应用题是小学数学应用题的重要组成部分。在小学中,比的应用题包括:比例尺应用题和按比例分配应用题,正、反比例应用题。

(一)比例尺应用题

这种应用题是研究图上距离、实际距离和比例尺三者之间的关系的。

解答这类应用题时,最主要的是要清楚比例尺的意义,即:

图上距离÷实际距离=比例尺

根据这个关系式,已知三者之间的任意两个量,就可以求出第三个未知的.量。

例题如下:

在比例尺是1:3000000的地图上,量得A城到B城的距离是8厘米,A城到B城的实际距离是多少千米?

思路分析:

把比例尺写成分数的形式,把实际距离设为x,代入比例尺的关系式就可解答了。所设未知数的计量单位名称要与已知的计量单位名称相同。

(二)按比例分配应用题

这类应用题的特点是:把一个数量按照一定的比分成两部分或几部分,求各部分的数量是多少。

这是学生在小学阶段唯一接触到的不平均分问题。

这类应用题的解题规律是:

先求出各部分的份数和,在确定各部分量占总数量的几分之几,最后根据求一个数的几分之几是多少,用乘法计算,求出各部分的数量。

按比例分配也可以用归一法来解。

例题如下:

一种农药溶液是用药粉加水配制而成的,药粉和水的重量比是1:100。2500千克水需要药粉多少千克?5.5千克药粉需加水多少千克?

思路分析:

已知药和水的份数,就可以知道药和水的总份数之和,也就可以知道药和水各自占总份数的几分之几,知道了分率,相应地也就可以求出各自相对量。

(三)正、反比例应用题

解答这类应用题,关键是判断题目中的两种相关联的量是成正比里的量,还是成反比例的量。

如果用字母x、y表示两种相关联的量,用K表示比值(一定),两种相向关联的量成正比例时,用下面的式子来表示:

kx=y(一定)。

如果两种相关联的量成反比例时,可用下面的式子来表示:

×y=K(一定)。

例题如下:

六一玩具厂要生产2080套儿童玩具。前6天生产了960套,照这样计算,完成全部任务共需要多少天?

思路分析:

因为工作总量÷工作时间=工作效率,已知工作效率一定,所以工作总量与工作时间成正比例。

;

② 小学数学应用题可分为几类分别是哪些请详细说明

和差问题

已知两个数的和与差,求这两个数的应用题,叫做和差问题。一般关系式有:

(和-差)÷2=较小数

(和+差)÷2=较大数

例:甲乙两数的和是24,甲数比乙数少4,求甲乙两数各是多少?

(24+4)÷2

=28÷2

=14 →乙数

(24-4)÷2

=20÷2

=10 →甲数

答:甲数是10,乙数是14。

差倍问题

已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题。基本关系式是:

两数差÷倍数差=较小数

例:有两堆煤,第二堆比第一堆多40吨,如果从第二堆中拿出5吨煤给第一堆,这时第二堆煤的重量正好是第一堆的3倍。原来两堆煤各有多少吨?

分析:原来第二堆煤比第一堆多40吨,给了第一堆5吨后,第二堆煤比第一堆就只多40-5×2吨,由基本关系式列式是:

(40-5×2)÷(3-1)-5

=(40-10)÷2-5

=30÷2-5

=15-5

=10(吨) →第一堆煤的重量

10+40=50(吨) →第二堆煤的重量

答:第一堆煤有10吨,第二堆煤有50吨。

还原问题

已知一个数经过某些变化后的结果,要求原来的未知数的问题,一般叫做还原问题。

还原问题是逆解应用题。一般根据加、减法,乘、除法的互逆运算的关系。由题目所叙述的的顺序,倒过来逆顺序的思考,从最后一个已知条件出发,逆推而上,求得结果。

例:仓库里有一些大米,第一天售出的重量比总数的一半少12吨。第二天售出的重量,比剩下的一半少12吨,结果还剩下19吨,这个仓库原来有大米多少吨?

分析:如果第二天刚好售出剩下的一半,就应是19+12吨。第一天售出以后,剩下的吨数是(19+12)×2吨。以下类推。

列式:[(19+12)×2-12]×2

=[31×2-12]×2

=[62-12]×2

=50×2

=100(吨)

答:这个仓库原来有大米100吨。

置换问题

题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。其结果往往与条件不符合,再加以适当的调整,从而求出结果。

例:一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。这个集邮爱好者买这两种邮票各多少张?

分析:先假定买来的100张邮票全部是20分一张的,那么总值应是20×100=2000(分),比原来的总值多2000-1880=120(分)。而这个多的120分,是把10分一张的看作是20分一张的,每张多算20-10=10(分),如此可以求出10分一张的有多少张。

列式:(2000-1880)÷(20-10)

=120÷10

=12(张)→10分一张的张数

100-12=88(张)→20分一张的张数

或是先求出20分一张的张数,再求出10分一张的张数,方法同上,注意总值比原来的总值少。

盈亏问题(盈不足问题)

题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。

解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。其计算方法是:

当一次有余数,另一次不足时:

每份数=(余数+不足数)÷两次每份数的差

当两次都有余数时:

总份数=(较大余数-较小数)÷两次每份数的差

当两次都不足时:

总份数=(较大不足数-较小不足数)÷两次每份数的差

例1、解放军某部的一个班,参加植树造林活动。如果每人栽5棵树苗,还剩下14棵树苗;如果每人栽7棵,就差4棵树苗。求这个班有多少人?一共有多少棵树苗?

分析:由条件可知,这道题属第一种情况。

列式:(14+4)÷(7-5)

=18÷2

= 9(人)

5×9+14

=45+14

=59(棵)

或:7×9-4

=63-4

=59(棵)

答:这个班有9人,一共有树苗59棵。

年龄问题

年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。

常用的计算公式是:

成倍时小的年龄=大小年龄之差÷(倍数-1)

几年前的年龄=小的现年-成倍数时小的年龄

几年后的年龄=成倍时小的年龄-小的现在年龄

例1、父亲今年54岁,儿子今年12岁。几年后父亲的年龄是儿子年龄的4倍?

(54-12)÷(4-1)

=42÷3

=14(岁)→儿子几年后的年龄

14-12=2(年)→2年后

答:2年后父亲的年龄是儿子的4倍。

例2、父亲今年的年龄是54岁,儿子今年有12岁。几年前父亲的年龄是儿子年龄的7倍?

(54-12)÷(7-1)

=42÷6

=7(岁)→儿子几年前的年龄

12-7=5(年)→5年前

答:5年前父亲的年龄是儿子的7倍。

例3、王刚父母今年的年龄和是148岁,父亲年龄的3倍与母亲年龄的差比年龄和多4岁。王刚父母亲今年的年龄各是多少岁?

(148×2+4)÷(3+1)

=300÷4

=75(岁)→父亲的年龄

148-75=73(岁)→母亲的年龄

答:王刚的父亲今年75岁,母亲今年73岁。

或:(148+2)÷2

=150÷2

=75(岁)

75-2=73(岁)

鸡兔问题

已知鸡兔的总只数和总足数,求鸡兔各有多少只的一类应用题,叫做鸡兔问题,也叫“龟鹤问题”、“置换问题”。

一般先假设都是鸡(或兔),然后以兔(或鸡)置换鸡(或兔)。常用的基本公式有:

(总足数-鸡足数×总只数)÷每只鸡兔足数的差=兔数

(兔足数×总只数-总足数)÷每只鸡兔足数的差=鸡数

例:鸡兔同笼共有24只。有64条腿。求笼中的鸡和兔各有多少只?

3k W UEw9I0

R,@ F/|1V7YWd-r0

Gb(e(o/X3QE&dL$Z0 凤凰博客h7IM?pJ'u7NV

'IG\ rf Y E0
(64-2×24)÷(4-2)

=(64-48)÷(4-2)

=16 ÷2

=8(只)→兔的只数

24-8=16(只)→鸡的只数

答:笼中的兔有8只,鸡有16只

凤凰博客3@8Zp|S5|+U



牛吃草问题(船漏水问题)

若干头牛在一片有限范围内的草地上吃草。牛一边吃草,草地上一边长草。当增加(或减少)牛的数量时,这片草地上的草经过多少时间就刚好吃完呢?

例1、一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天。如果青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天?

分析:一般把1头牛每天的吃草量看作每份数,那么15头牛吃10天,其中就有草地上原有的草,加上这片草地10天长出草,以下类推……其中可以发现25头牛5天的吃草量比15头牛10天的吃草量要少。原因是因为其一,用的时间少;其二,对应的长出来的草也少。这个差就是这片草地5天长出来的草。每天长出来的草可供5头牛吃一天。如此当供10牛吃时,拿出5头牛专门吃每天长出来的草,余下的牛吃草地上原有的草。

(15×10-25×5)÷(10-5)

=(150-125)÷(10-5)

=25÷5

=5(头)→可供5头牛吃一天。

150-10×5

=150-50

=100(头)→草地上原有的草可供100头牛吃一天

100÷(10-5)

=100÷5

=20(天)

答:若供10头牛吃,可以吃20天。

例2、一口井匀速往上涌水,用4部抽水机100分钟可以抽干;若用6部同样的抽水机则50分钟可以抽干。现在用7部同样的抽水机,多少分钟可以抽干这口井里的水?

(100×4-50×6)÷(100-50)

=(400-300)÷(100-50)

=100÷50

=2

400-100×2

=400-200

=200

200÷(7-2)

=200÷5

=40(分)

答:用7部同样的抽水机,40分钟可以抽干这口井里的水。

公约数、公倍数问题

运用最大公约数或最小公倍数解答应用题,叫做公约数、公倍数问题。

例1:一块长方体木料,长2.5米,宽1.75米,厚0.75米。如果把这块木料锯成同样大小的正方体木块,不准有剩余,而且每块的体积尽可能的大,那么,正方体木块的棱长是多少?共锯了多少块?

分析:2.5=250厘米

1.75=175厘米

0.75=75厘米

其中250、175、75的最大公约数是25,所以正方体的棱长是25厘米。

(250÷25)×(175÷25)×(75÷25)

=10×7×3

=210(块)

答:正方体的棱长是25厘米,共锯了210块。

例2、两啮合齿轮,一个有24个齿,另一个有40个齿,求某一对齿从第一次接触到第二次接触,每个齿轮至少要转多少周?

分析:因为24和40的最小公倍数是120,也就是两个齿轮都转120个齿时,第一次接触的一对齿,刚好第二次接触。

120÷24=5(周)

120÷40=3(周)

答:每个齿轮分别要转5周、3周。

分数应用题

指用分数计算来解答的应用题,叫做分数应用题,也叫分数问题。

分数应用题一般分为三类:

1.求一个数是另一个数的几分之几。

2.求一个数的几分之几是多少。

3.已知一个数的几分之几是多少,求这个数。

其中每一类别又分为二种,其一:一般分数应用题;其二:较复杂的分数应用题。

例1:育才小学有学生1000人,其中三好学生250人。三好学生占全校学生的几分之几?

答:三好学生占全校学生的。

例2:一堆煤有180吨,运走了。走了多少吨?

180×=80(吨)

答:运走了80吨。

例3:某农机厂去年生产农机1800台,今年计划比去年增加。今年计划生产多少台?

1800×(1+)

=1800×

=2400(台)

答:今年计划生产2400台。

例4:修一条长2400米的公路,第一天修完全长的,第二天修完余下的。还剩下多少米?

2400×(1-)×(1-)

=2400××

=1200(米)

答:还剩下1200米。

例5:一个学校有三好学生168人,占全校学生人数的。全校有学生多少人?

168÷=840(人)

答:全校有学生840人。

例6:甲库存粮120吨,比乙库的存粮少。乙库存粮多少吨?

120÷=120×=180(吨)

答:乙库存粮180吨。

例7:一堆煤,第一次运走全部的,第二次运走全部的,第二次比第一次少运8吨。这堆煤原有多少吨?

8÷(-)

= 8÷

=48(吨)

答:这堆煤原有48吨。

工程问题

它是分数应用题的一个特例。是已知工作量、工作时间和工作效率,三个量中的两个求第三个量的问题。

解答工程问题时,一般要把全部工程看作“1”,然后根据下面的数量关系进行解答:

6q1U]7in!S7x0
凤凰博客tr IJ0OYWV

P tAd)J.IH0
&h|il)t&ZS6h&kC0
nVg2v IdgI0
工作效率×工作时间=工作量

'F5q/f,z5b@y0
工作量÷工作时间=工作效率

凤凰博客q!q1Nc3E-n`a9[Q$M

工作量÷工作效率=工作时间

凤凰博客9FA*o d#`7I!l

例1:一项工程,甲队单独做需要18天,乙队单独做需要24天。如果两队合作8天后,余下的工程由甲队单独做,还要几天完成?

N W5l,VjH`|0
凤凰博客+ZO'R HhI

凤凰博客hq$TU!bO$rEQ
凤凰博客6O]p/ZV2wc
[1-()×8]÷
,l!l9zI"b&W0
=[1-]÷

=×18

=4(天)

答:(略)。

凤凰博客1Q0RO&]%owG

例2:一个水池,装有甲、乙两个进水管,一个出水管。单开甲管2小时可以注满;单开乙管3小时可以注满;单开出水管6小时可以放完。现在三管在池空时齐开,多少小时可以把水池注满?

|5W.WuC3p0
凤凰博客 SX}9q7|f

凤凰博客UO`8_%F(u8Br

"[6Xr3MHv)I0 1÷(+-) 凤凰博客I@ ?b&W+CD

=1÷

=1(小时)

答:(略)

凤凰博客o Sj4ON:}2\/a+N

百分数应用题

这类应用题与分数应用题的解答方式大致相同,仅求“率”时,表达方式不同,意义不同。

例1.某农科所进行发芽试验,种下250粒种子。发芽的有230粒。求发芽率。

答:发芽率为92%。

③ 小学数学应用题的定义是什么

在数学上,应用题分两大类:一个是数学应用.另一个是实际应用.
数学应用就是指单独的数量关系,构成的题目,没有涉及到真正实量的存在及关系.实际应用也就是有关于数学与生活题目.
图解分析法这实际是一种模拟法,具有很强的直观性和针对性,数学教学中运用得非常普遍.如工程问题、速度问题、调配问题等,多采用画图进行分析,通过图解,帮助学生理解题意,从而根据题目内容,设出未知数,列出方程解之.(例略)

④ 小学数学应用题分类及题

典型应用题
具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。
(1)平均数问题:平均数是等分除法的发展。
解题关键:在于确定总数量和与之相对应的总份数。
算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。
加权平均数:已知两个以上若干份的平均数,求总平均数是多少。
数量关系式 (部分平均数×权数)的总和÷(权数的和)=加权平均数。
差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。
数量关系式:(大数-小数)÷2=小数应得数 最大数与各数之差的和÷总份数=最大数应给数 最大数与个数之差的和÷总份数=最小数应得数。
例:一辆汽车以每小时 100 千米 的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。求这辆车的平均速度。
分析:求汽车的平均速度同样可以利用公式。此题可以把甲地到乙地的路程设为“ 1 ”,则汽车行驶的总路程为“ 2 ”,从甲地到乙地的速度为 100 ,所用的时间为 ,汽车从乙地到甲地速度为 60 千米 ,所用的时间是 ,汽车共行的时间为 + = , 汽车的平均速度为 2 ÷ =75 (千米)

(2) 归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。
根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。
根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。
一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”
两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”
正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。
反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。
解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。
数量关系式:单一量×份数=总数量(正归一)
总数量÷单一量=份数(反归一)
例 一个织布工人,在七月份织布 4774 米 , 照这样计算,织布 6930 米 ,需要多少天?
分析:必须先求出平均每天织布多少米,就是单一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)

(3)归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。
特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。
数量关系式:单位数量×单位个数÷另一个单位数量 = 另一个单位数量 单位数量×单位个数÷另一个单位数量= 另一个单位数量。
例 修一条水渠,原计划每天修 800 米 , 6 天修完。实际 4 天修完,每天修了多少米?
分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。 80 0 × 6 ÷ 4=1200 (米)

(4) 和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。
解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。
解题规律:(和+差)÷2 = 大数 大数-差=小数
(和-差)÷2=小数 和-小数= 大数
例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?
分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 - 87=7 (人)

(5)和倍问题:已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。
解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。
解题规律:和÷倍数和=标准数 标准数×倍数=另一个数
例:汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?
分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 115-7 )辆 。
列式为( 115-7 )÷( 5+1 ) =18 (辆), 18 × 5+7=97 (辆)

(6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。
解题规律:两个数的差÷(倍数-1 )= 标准数 标准数×倍数=另一个数。
例 甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米? 各减去多少米?
分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多( 3-1 )倍,以乙绳的长度为标准数。列式( 63-29 )÷( 3-1 ) =17 (米)…乙绳剩下的长度, 17 × 3=51 (米)…甲绳剩下的长度, 29-17=12 (米)…剪去的长度。

(7)行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
解题关键及规律:
同时同地相背而行:路程=速度和×时间。
同时相向而行:相遇时间=速度和×时间
同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。
同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。
例 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙?
分析:甲每小时比乙多行( 16-9 )千米,也就是甲每小时可以追近乙( 16-9 )千米,这是速度差。
已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 16-9 )千米,也就是追击所需要的时间。列式 2 8 ÷ ( 16-9 ) =4 (小时)

(8)流水问题:一般是研究船在“流水”中航行的问题。它是行程问题中比较特殊的一种类型,它也是一种和差问题。它的特点主要是考虑水速在逆行和顺行中的不同作用。
船速:船在静水中航行的速度。
水速:水流动的速度。
顺水速度:船顺流航行的速度。
逆水速度:船逆流航行的速度。
顺速=船速+水速
逆速=船速-水速
解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。 解题时要以水流为线索。
解题规律:船行速度=(顺水速度+ 逆流速度)÷2
流水速度=(顺流速度逆流速度)÷2
路程=顺流速度× 顺流航行所需时间
路程=逆流速度×逆流航行所需时间
例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米?
分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。已知顺水速度和水流 速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。列式为 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小时) 28 × 5=140 (千米)。

(9) 还原问题:已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。
解题关键:要弄清每一步变化与未知数的关系。
解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。
根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。
解答还原问题时注意观察运算的顺序。若需要先算加减法,后算乘除法时别忘记写括号。
例 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人?
分析:当四个班人数相等时,应为 168 ÷ 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。四班原有人数列式为 168 ÷ 4-2+3=43 (人)
一班原有人数列式为 168 ÷ 4-6+2=38 (人);二班原有人数列式为 168 ÷ 4-6+6=42 (人) 三班原有人数列式为 168 ÷ 4-3+6=45 (人)。

(10)植树问题:这类应用题是以“植树”为内容。凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。
解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。
解题规律:沿线段植树
棵树=段数+1 棵树=总路程÷株距+1
株距=总路程÷(棵树-1) 总路程=株距×(棵树-1)
沿周长植树
棵树=总路程÷株距
株距=总路程÷棵树
总路程=株距×棵树
例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。求改装后每相邻两根的间距。
分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。列式为 50 ×( 301-1 )÷( 201-1 ) =75 (米)

(11 )盈亏问题:是在等分除法的基础上发展起来的。 他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。
解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。
解题规律:总差额÷每人差额=人数
总差额的求法可以分为以下四种情况:
第一次多余,第二次不足,总差额=多余+ 不足
第一次正好,第二次多余或不足 ,总差额=多余或不足
第一次多余,第二次也多余,总差额=大多余-小多余
第一次不足,第二次也不足, 总差额= 大不足-小不足
例 参加美术小组的同学,每个人分的相同的支数的色笔,如果小组 10 人,则多 25 支,如果小组有 12 人,色笔多余 5 支。求每人 分得几支?共有多少支色铅笔?
分析:每个同学分到的色笔相等。这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 25-5 ) =20 支 , 2 个人多出 20 支,一个人分得 10 支。列式为( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。

(12)年龄问题:将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。
解题关键:年龄问题与和差、和倍、 差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。
例 父亲 48 岁,儿子 21 岁。问几年前父亲的年龄是儿子的 4 倍?
分析:父子的年龄差为 48-21=27 (岁)。由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是( 4-1 )倍。这样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍。列式为: 21( 48-21 )÷( 4-1 ) =12 (年)

(13)鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题
解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。
解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数
兔子只数=(总腿数-2×总头数)÷2
如果假设全是兔子,可以有下面的式子:
鸡的只数=(4×总头数-总腿数)÷2
兔的头数=总头数-鸡的只数
例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?
兔子只数 ( 170-2 × 50 )÷ 2 =35 (只)
鸡的只数 50-35=15 (只)

⑤ 什么是应用题

应用题是用语言或文字叙述有关事实,反映某种数量关系,并求解未知数量的题目。每个应用题都包括已知条件和所求问题。

中国的应用题通常要求叙述满足三个要求:无矛盾性,即条件之间、条件与问题之间不能相互矛盾;完备性,即条件必须充分,足以保证从条件求出未知量的数值;独立性, 即已知的几个条件不能相互推出。

小学数学应用题通常分为两类:只用加、减、乘、除一步运算进行解答的称简单应用题;需用两步或两步以上运算进行解答的称复合应用题。

(5)什么叫做小学数学应用题扩展阅读:

应用题的分析方法:

1、图解分析法

这实际是一种模拟法,具有很强的直观性和针对性,数学教学中运用得非常普遍。如工程问题、行程问题、调配问题等,多采用画图进行分析,通过图解,帮助学生理解题意,从而根据题目内容,设出未知数,列出方程解之。

2、亲身体验法

如讲逆水行船与顺水行船问题。有很多学生都没有坐过船,对顺水行船、逆水行船、水流的速度,学生难以弄清。为了让学生明白,举骑自行车为例(因为大多数学生会骑自行车),学生有亲身体验,顺风骑车觉得很轻松,逆风骑车觉得很困难,这是风速的影响。

并同时讲清,行船与骑车是一回事,所产生影响的不同因素一个是水流速,一个是风速。这样讲,学生就好理解。

3、直观分析法

如浓度问题,首先要讲清百分浓度的含义,同时讲清百分浓度的计算方法。其次重要的是上课前要准备几个杯子,称好一定重量的水,和好几小包盐进教室,以便讲例题用。

⑥ 如何做小学数学应用题

应用题教学是小学数学教学的重要组成部分,他是培养学生综合运用所学知识分析问题、解决问题的能力,是发展学生数学思维的最重要途径.。因此,在教学中必须突出多读、多思。让学生在多读,多思中发现问题、探索问题、掌握规律,提高解答应用题的能力。

下面我谈谈孩子们应该如何读题?
(一)运用直观媒体,理解应用题的题意,从当前教学中反映的问题来看,应注意读题和直观媒体紧密结合,依题解题,读题要加强。不能一字一字地读,也不要只读一遍。要读出停顿。如按标点符号停顿;按句子成分停顿;按内容的逻辑停顿。可多读几遍,在读的过程中使用直观媒体,帮助学生理解题内容,操作时可把一句句话和媒体正确对应,读时可以围绕难点,重点词语,勾画内容之间的联系。 (二) 读题后的思考
第一,思已知 就是让学生在感知已知条件的基础上,展开思维,“你联想到了什么?”它是学生读懂题意,找到已知条件与问题联系的途径之一。例如:一个圆柱的侧面展开是一个正方形,它的边长是18.84厘米,这个圆柱的底面半径是多少厘米?学生在读完“一个圆柱的侧面展开是一个正方形”时,就会联想到它的底面周长等于高,也就是底面周长和高都等于这个正方形的边长,从而实现了已知条件与问题的紧密联系,有助于问题的解决。
第二,思问题 就是根据问题,展开思维,找到问题与已知条件的联系。它是培养学生分析问题能力的有效方法之一。在教学中,我们可以从问题入手分析,学生根据自己已有的数量关系和生活经验,找到要解决这个问题需要知道哪两个条件,如果两个条件都是未知的,下一步该怎么做?这样一步一步地分析,就能找到要求的问题。例如:甲乙两车分别从相距420千米两地同时出发,相向而行,经过6小时相遇,已知甲车每小时行40千米,乙车每小时行多少千米?要求乙车的速度,需要知道甲乙两车的速度和与甲车的速度(或需要知道乙车行的路程和所行时间)。速度和是未知的,甲车的速度是已知的,因此要先求出速度和;而要求速度和?就要知道总路程和相遇时间,这两者都是已知的,问题就解决了。 (三) 解题后在思考
第一,思多解 思多解不仅可以锻炼学生的发散性思维,创新思维,而且可以培养学生综合运用数学知识解决问题的能力。在教学中,不少的应用题客观上存在着多种解法,我们应启发学生一题多思,一题多解,在多解中比较各种解法的优点和缺点,选择最佳解法。从而达到提高学生解题能力,培养学生良好思维品质的目的。
第二,思变通 应用题是千变万化的,多练只会苦了学生,累了自己,精练才会事半功倍。“一题多变”就是精练的好方法之一,它不仅可以开阔学生的眼界,拓展学生的思维,提高学生的应变能力,而且可以防止学生思维的定势。教师在设计作业时,将某一应用题的已知条件或问题变一变,让学生对比练习,提高迁移能力。
第三,思规律 解题后,要启发学生思考解题思路,不但要学生知道该怎么做,而且还要知道为什么这样做,认真总结规律,以达到举一反三的目的,这样有利于强化知识的理解和运用,提高学生解答应用题的能力。
如何教好小学数学应用题
应用题的教学是小学数学教学中的一个难点,解答应用题的过程,其实就是分析、推导、综合数量关系,由已知求出未知的过程。应用题的解答不仅要综合运用小学数学中的概念、性质、意义、法则、公式等基础知识,还要具有分析、判断、推理、综合等思维能力。所以,应用题教学不但可以巩固知识,而且有利于培养学生初步的逻辑思维能力。那么,如何进行应用题教学呢?为此,笔者经过不断探索与实践,精心设计了应用题七环教学法,收到了可观的教学效果。
应用题七环教学法是在心理学理论和《数学课程标准》的指导下,根据应用题的特点,从应用题生活化的角度,针对应用题在小学中的地位,对应用题给师生带来的困惑进行不断的探索与研究得出的。它以学生为主体,以加强思维训练、发展学生思维为重点,着眼于提高学生灵活解决实际问题的能力。其基本环节是:导→读→思→说→记→找→研。现分述导
导,即导入新课,是老师有机连接各个环节的桥梁。其目的是为学生探究新知识指明方向,激发学生学习的积极性,把学生的注意力集中于新知识上,使学生全身心地投入学习。导的水平如何,将直接影响教学的成败。因此,对这一环节的教学,教师千万不可小觑,要引起高度的重视,不仅要让导的内容与新知识紧密联系在一起,使其有利于学生进行迁移类推,而且要密切联系学生实际和现实生活,使学生感到既容易学,又有趣;
既有用,又有价值。为此,教学中,教师要注意导的方式,或者从学生的实际生活进行启发,或者充分使用学具、教具进行设疑,或者运用课件,充分发挥多媒体的优势吸引学生,或者环环相扣,以旧引新。总之,不论运用什么方式,只要能达到导的目的,导得自然,一般来说,都是可取而有效的导入方式。 2、读
读,指读题目,是应用题教学的重要环节,是学生自己感知信息数据的过程。读,看起来是非常简单的事,其实,要把应用题读通、读透,还是比较困难的。有的学生之所以做错,其实主要原因之一就是由于读题时走马观花,没有读懂。“书读百遍,其义自见。”应用题也不例外。甚至可以这么说:“与其让学生抄题目,不如让学生多读题目。”这当中的道理,就像让学生抄不认识的字一样,不论抄多少遍,学生还是同样不认识、不理解。
读,要讲究一定的方式。在小学,大多数的学生读题时都不注意停顿,语感非常差,使得数学意识低下,因而理解不透题意。教学中教师要给学生以读的指导:可以朗读,可以默读;可以个人读,也可以分组读;还可以全班齐读,形式不拘一格。此外,还要注意读的语速。通常情况下,语速以稍慢为佳,以能准确感知信息数据及问题为标准。因此 ,读的时候一定要全面、仔细,既不加字也不减字,对于较深的题目,甚至要咬文嚼字。这样不仅能提高学生的数学意识,而且也使学生的感知能力得到了培养,同时也提高了学生捕捉信息数据的能力,为学生理解题意奠定了初步的基石。 3、思
思,指学生读题后,思考题目中的已知条件和问题该如何表述,该把哪个量看作单位“1”,如何用线段图描述题目,题目中有什么样的数量关系,可以用什么方法来解答等,是培养学生思维能力的中心环节。学生思得如何,主要是看教师是否根据学生的经历和思维水平,合理而充分利用可用的教学资源,使学生思维现实化。只要是上数学的老师,都很清楚地知道,一些学生,尤其是学困生,在掌握数学知识时,往往感到困难重重,其中重要的原因就是他们在解题过程中缺乏思维活动的自觉性与周密性。因此,教学中教师要加强引导,切实做好学生的引导者,设法调动学生的大脑器官。不但要留给学生充分思考的余地,使学生主动而积极地产生遐想,引发思维的火花,而且要关注每一个学生的思维活动,为学生提供独立思考的机会,对学生负责。切忌以教师的说讲来代替学生的思,力求“实现不同的人在数学上都得到不同程度的发展”。
4、说
说,指学生用语言对自己的思考进行表达,属于口头动脑,是对题目的再理解,是最积极的思维表现。“人的思维,尤其是抽象思维,与言语密不可分。”“言语使思维更凝缩。”“语言是思维的工具,人们利用它进行各种思维活动。”可见,语言能促进思维的发展。说也是教师了解学生思维水平的重要手段。教师评价学生爱动脑筋,勤于思考,智商高等,主要就是从学生平时说的积极性这一角度来进行评价的。所以在教学过程中,教师要重视说的训练,尤其是学困生,更应该激发他们说的欲望,使他们不仅仅是想说,而且是要说;给他们一个说的舞台,让他们充分表现自己,体验到成功的快乐。因此,说的时候应尽可能采用个人说的方式进行,以便更好地了解学生。此外,还要要重视说的依据,也就是根据什么来说的。只有把依据弄得一清二楚,学生才能明白应用题是如何体现基础知识点的,才能判断自己思的结果是否正确。这样不仅能让学生更好地掌握和运用基础知识,加深对应用题的理解,学会思的方法,而且能使学生正确认识自己,建立自信。 5、记
记,指将学生说的内容简单明了地写下来。就条件和问题来说,记的实质是对原题进行删节、组装、制作的过程,是对原题的一种精加工。就整个这一环节来说,记的目的是变复杂为简单,加深记忆,强化理解,以便于学生观察、分析和综合运用。常言道:好记性不如烂笔头。学生通过“读”“思”“说”的训练后,得到的材料往往是零乱的,因而运用时常常丢三落四。在现实生活中,应用题也并非要像书上那样详细地写出来,而只需要进行简单地记载即可。记,还是学生概括能力的表现之一。通过观察记的内容是否完整简洁,可以看出学生提练语言的水平。因此,教师有必要培养学生记的能力,尤其是较复杂的应用题,记就更有必要了。记,最好在草稿本上进行,当然,如果觉得有必要,也可以在作业本上进行,但一定要注意题目中具有隐蔽性的那种条件,记的时候应当把缺省部分写出来。
例如:“一个儿童体内所含的水分有28千克,占体重的4/5。这个儿童的体重是多少千克?”在这道题中,“占体重的4/5”是一个缺省条件,应该把缺省的部分“水分”补出来,记为“水分占体重的4/5”只有这样,才能为学生扫清第一道障碍。 6、找
找,指学生根据已知条件和问题,找出题目的突破口和单位“1”等,进而找出题目中
的数量关系(等量关系),属于分析的过程。
突破口一般是一个比较难理解的句子,是学生理解题的拦路虎,通常是带比、分数或几倍等的语句。教师应当设法使学生找出这种句子进行理解。单位“1”是用来衡量的量,一般是紧接分数或几倍前的那个量;有比时,通常是相比的几个合起来的总量;或者就是题目中的总路程、总工作量等。总的说来,和谁进行比较,谁就是单位“1”。单位“1”是学生解答应用题的基础之一。学生是否找准单位“1”,常常影响解题的对错。因此,教学中,教师要要引导学生弄清用来比较的量,教给学生识别比较量的方法,以便找出单位“1”的量。值得注意的是有的题目中存在着两个甚至三个单位“1”,解题时要注意单位“1”的统一。数量关系是应用题的灵魂,是学生解答应用题的前提和根本,也是学生解答应用题最大的困难。数学教学不仅要使学生了解人类关于数学方面的文化遗产,学到一定的数学知识,还要使学生学会用知识来认识事物,解决实际问题。因此,教师不仅要使学生能获取数学基础知识,而且要重视培养学生的数学意识和从具体题目中找数量关系的能力。只有找到正确无误的数量关系,才能根据数量关系进行正确的解答。
找数量关系的方法有三种: ①对已知条件和问题逐一找; ②对已知条件和问题综合找;
③明确单位“1”,画线段图找。画线段图时,一般是先任意画一条线段来表示单位“1”的量,然后确定应该分的段数……单位“1”的量画好了,再画其他的量。
例如:“一条裤子的价格是75元,是一件上衣的2/3。一件上衣多少元?”在这道题中,“是一件上衣的2/3”是一个缺省条件,是题目的突破口,应注意理解;应该把“上衣”看作单位“1”。学生这样理解后,自然能找出“裤子单价=上衣单价×2/3”这一数量关系,或者画出下面的线段图,找出数量关系。 7、研
研,指学生根据信息数据,利用找到的基本数量关系及某一条件或问题,研究出其他的数量关系,也就是从不同的角度进行思考,灵活运用后学知识,尝试多种多样化的解题方法,是解题思维的拓展,能培养学生思维的灵活性。其具体做法可以是利用加减乘除各部分间的关系对数量关系进行变式,也可以是对题目中能进行转换说法的条件(多数是
带几倍分数或比的条件)进行换说法,也就是运用多种方法表达所学知识,)3找出新的数量关系进行解答。
例如:“一个农场计划在100公顷的地里播种大豆和玉米。播种面积的比是3:2。两种作物各播种多少公顷?”本题中有一个明显的数量关系:“大豆面积 玉米面积 = 100 ”利用加法各部分间的关系,可以得到两个数量关系:“大豆面积 = 100 - 玉米面积”和“玉米面积 = 100 - 大豆面积”。题目中的关键句是“播种面积的比是3:2”,也是一个缺省条件,补完整就是“大豆面积与玉米面积的比是3:2,即,大豆面积:玉米面积=3:2 。对这一条件进行换说训练,又可以得到以下说法和理解: ①玉米面积:大豆面积 = 2:3
②大豆面积是玉米面积的3/2(豆=玉×3/2;玉为单位“1”) ③玉米面积是大豆面积的2/3(玉=豆×2/3;豆为单位“1”)
④大豆面积比玉米面积多1/2〈 豆=玉 玉×1/2;豆=玉×(1 1/2);玉为单位“1” 〉 ⑤玉米面积比大豆面积少1/3 玉=豆-豆×1/3;玉 = 豆×(1-1/3);豆为单位“1” ⑥大豆面积3份,玉米面积2份,共5份。
又如:“一张课桌比一把椅子贵10元,如椅子的单价是课桌的3/5。课桌、椅子各是多少元?”本题中的“ 椅子的单价是课桌的3/5”这一条件也可以理解为“椅子单价:课桌单价=3:5”这样又可以像上一例一样进行探究,从而找出多种多样的数量关系,这样不仅加深了理解,丰富了解法,更有助于发展学生的思维。
总之,研究出的数量关系越多,“脑野”越开阔,思路越清析,解题方法越丰富灵活。因此,教学中教师不能仅仅满足于得出正确的结果,而要进行必要的研究。只有这样才能使学生能灵活运用不同的方法解决问题,做到活学活用,也只有这样才能满足于优秀学生的求知欲,使其在数学上得到更好的发展。
以上七个环节,并非是孤立的,每一环节都可能会有其他环节的相随或参与。《数学课程标准》指出:学生是学习的主人,教师是数学教学的组织者,引导者与合作者。因此,在七环教学法中,教师要把握好自己的角色。提高学生解应用题的能力,是一个长期而复杂的过程,不能一蹴而就。教师要转变思想观念、教学方式和学习方式,经常以思为中心,让说贯穿始终,充分调动学生感观,使学生的脑、眼、口、手齐头并进,勇于让学生以合作交流等方式去主动探究。只有这样,才能培养学生思维,拓宽解题思路。学生遇到应用题时,才能迎刃而解。
如何做好小学数学应用题教学
我们大家都知道,小学阶段的学习是人的终身教育的起始站,学习数学不应仅仅是为了获取有限的知识和技能。我们的教学更要注重让学生学习自行获取数学知识的方法,学习主动参与本领,获得终身受用的可持续学习的发展性学力,即让学生学会学习,为他们将来走向社会和终身学习打下基楚,由此,“以学生的发展为本”应是我们课堂教学的出发点和归宿。
通过实践教学获得的经验,我认为应用题难学的学生占63%,很多学生家长也认为辅导子女学习应用题比较困难。存在这种现象的原因:一是题材内容不符合当地的实际情况,往往有些题型的内容在我们农村孩子从来都没有见过或接触过,也就是说现在教材中的应用题有许多内容脱离学生的实际生活,这就增加了学生对题目的理解缺乏兴趣,缺少与其学科的联系与沟通,从而影响到对其他学科的学习,教师只有普遍采用一问一答的讲解;二是教学目标注重解题技能、解题技巧的训练,忽视应用意识、应用能力及创新意识、创新精神的培养;。三是解法不活,解题思路不够开阔,学生仅仅是模仿解题,没有选择的权利,没有思考想象的机会,更没有主动探究、创新思维的时间与空间。影响学生灵活运用知识。导致学生对应用题理解困难。四是应用题的呈现方式主要以城市为主,把农村的教育忽略,缺乏与农村知识的沟通,导致学生学得不明不白。教学模式单一,多为一例一练,应用性不强,学生学的时候好像明明白白,用的时候无从下手。因此,应用题的教学应该从上面这几个问题去思考。从而增强应用题的应用味,提高学生解决实际问题的能力,提高应用题教学的效果。
如何使应用题更应生活化呢?我认为教师应该让学生喜欢充满乐趣的生活中的数学问题,所以有必要对教材中应用题的选材,作一下改编。例如教学相差关系的应用题时,老师提供给学生几条信息:苹果有20筐,梨子有12筐,苹果比梨子多8筐。应该把“筐”改为“颗”或“个”就把学生带入了身边的情境中,让学生感受到了数学就在身边,使应用题有了“应用味”。?此外,应用题应具有多样性和灵活性。多样的、灵活的呈现应用题,能让学生全面参与教学的过程,教师跟着学生的思路走,适时予以点拨,充分体现了学生学习的主体性。才能更有效的解决问题,既扩大农村孩子的眼界,又扩展孩子的知识面。这样就能使得教育教学质量得到更好的提高。
如何教学应用题
小学三年级应用题是整数应用题的总结。在这一阶段把整数应用题中的一般应用题和典型应用题作了一个全面的汇总。所以小学三年级应用题的教学是一个非常重要的阶段,涉及一般应用题到典型应用题,从一步应用题到几步应用题,这就要求学生掌握从普遍到特殊,从简单到复杂的解答方法,也要求教师要帮助学生不断地归纳、综合,让学生从已学习到的解题方法中找出规律,把握特点。
在小学三年级数学整数应用题的教学中,应注意抓住解答应用题的一般方法,教会学生解答应用题的切入点。我们知道解答一般思考应用题的方法是:问题〈--〉已知。解答过程是:1、读题,2、分析,3、解答,[列式],4、检查。而在教学实践中,我觉得最难的是要教会学生把这个程有机的结合。于是,我就提出一些要求,让学生知道解题过程中各个环节中应达到的目的,使学生有的放矢。例如在教学:“三年级一班栽树40棵,二班栽的比一班多5棵。两个班一共栽树多少棵?”
这道应用题时,我就提出一系列的问题要学生思考:这道题说的什么事?有几个班栽树?拿个班栽得多?“一共”是什么意思?求“一共”用什么方法?这一串问题使学生在思考的过程中把解题的方法也有机的结合起来。教会了学生怎样去发现问题,提出问题,解决问题。也就教会了学生在不知不觉中运用从问题〈---〉已知的一般的解题方法。
小学三年级应用题中还涉及到许多典型应用题。如:路程除以速度=时间,总产量除以工效=工作时间,总产量除以单产量=数量,总价除以数量=单价。之所以把它们叫做典型应用题,是因为这类应用题有着极强的规律性。虽然这类应用题也可以用解答一般应用题的方法来解答,但如果学生把握到它的规律性,用它特有的典型关系式来分析、解答就会更加简便。例如:商店有12箱水瓶,每箱5个,每个10元。着些水瓶一共可以卖多少元?(这道题是求总价,关系式是:总价=单价乘以数量)
这样根据数量关系式就能轻松的解决这道题。当然一般典型应用题都不是一步的简单应用题,这就要求学生要熟练地、准确地应用各种关系式子。在教学中教师要准确的定义关系式子中的一些慨念。如:“速度”,“单价”,“工效”等等。并列举生活中有关慨念的例子,让学生判断、理解,逐步掌握、运用,以利于学生更好的解决典型应用题。
以上是我的一管之见,在大力实施素质教育的今天,学生素质的提高,有赖于教师素质的提高。希望我们不断的研究教材,探索教法提高自身的素质,从而更好的贯彻素质教育。
如何教小学生解应用题
在小学数学的学习中,应用题的占的比率很大。而在现实生活中,我们也可以利用所学到的应用题来解决实际的问题。例如,费用的支出和收入、盈亏问题,行程问题,工程问题等等。因此,可以说应用题是生活的需要,无所不有,无处不在。其实应用题的学习是对小学生进行思维训练,培养小学生的数学逻辑思维能力,提高其数学素质。因此,应用题教学是小学数学教学中的一个重点。

我认为应用题的教授一定要加强其思维的训练,语言的训练,这样才能提高学生灵活解决实际问题的能力。所以我总结了以下几个步骤:读——划——思——解,现分述如下,希望可以帮助学生更好的学习应用题。
1:读
应用题是用语言表述的一类题型,对语言的理解能力要求非常高。因此,读题便成为解应用题的一个重要环节是学生自己感知信息数据的过程。读看起来很简单,但数学应用题的读并非泛泛而读,它要求讲究一定的方式,数学中的读不讲究抑扬顿挫、优美动听,但需要用心、用脑、集中注意的读,一般来讲要读三遍:第一遍初读,对题目有初步印象;第二遍应逐字逐句的读,重点理解每个词、术语的实际含义;第三遍连贯起来读,重点掌握题目的已知条件和所求问题。
例:星火煤厂上半年原计划产煤6.6万吨,实际每月比原计划多产2.2万吨,照这样计算,完成上半年计划需用几个月?
在读这个题目时需要通过大脑反映弄清四个问题: (1)这道题叙述的是哪个单位的什么事?
(2)题目第一个条件是什么?“上半年”和“原计划”又是什么? (3)题目第二个条件是什么?关键词是什么?谁和谁比?比什么?比的结果怎样?
(4)问题是什么?“照这样计算”是什么意思?
划。顾名思义就是把什么圈出来。这一步对小学生而言是无论如何都不能省略的,它是在读完题后进行的,是在读的基础上进一步明确题意,抓住重点的关键。例如:在教《分数加减法》时,经常会遇到这样的题目,一块地公顷,其中种大豆, 种棉花,其余种玉米,玉米的种植面积占这块地的几分之几?
这道题主要是让你区别给你的分数是分率还是一个数。这个时候我就要求学生必须把有单位名称的数字圈出来,这样可以提醒自己,数和分率是不同的,不可以进行加减法。同时划出“几分之几”明白的告诉学生求的是一个分率,和 公顷无关。划是一个很好的习惯,可以提醒学生在今后的思考中注意一些细小的地方,以免出现不该有的错误。
思:
学生读题后,获取了一知和问题后,接下来就是在大脑中对这些信息进行加工,也就是思。一般来说,思有两种思考方法:
(1)顺着思考,即由已知——结论,从已知中获取信息,一步步推出过程量,慢慢靠近所求结果:
例果园里有4行苹果树,每行18棵,还有2行梨树,每行12棵,苹果树是梨树的几倍?
解:我们可以用图把思考过程表示如下(顺推) 已知
4行苹果树 2行梨树 每行18棵每行12棵 苹果树总数 梨树总数 苹果树是梨树的几倍?
(2)倒推法,即从问题入手——想要解决这个问题需要知道些什么条件,这些条件是题目中的已知的,还是未知量,要知道这个未知量又需要什么条件,需要什么样的数量关系来解决,直到在题目中找到已知:
同上例:执果溯因(倒推图解) 问题: 苹果树是梨树的几倍? 苹果树有多少棵? 梨树有多少棵? 4行苹果树 2行梨树 每行18棵每行12棵
已知
综上,思考应用题是培养学生思维能力的中心环节。因此,教学中教师要加强引导,切实做好学生的引导者,设法调动学生的大脑器官。要留给学生充分思考的余地,为学生提供一个独立思考的机会。
解,指的是学生的解答。或许学生认为这一部分他们是最会的。其实要把一道应用题完整的写下来,让老师给你满分。同样需要锤炼。学生需要把刚才思考的过程用数字的形式表示出来。在解应用题时,题目中没有出现过的数学是不可以出现在题目中的,即使是显而易见的数字也需要你进行一定的说明。这是数学的严谨性。所写的式子,要让别人看了也完全明白你的思路,这样才是一个漂亮的式子。应用题写的时候要注意:如果是方程,学生的解设就是不可或缺的。所列的方程未知数后面并不需要有单位名称。但如果是一般的式子,单位名称则需要写上去。当然求比率、分率等是没有单位名称的。最后是写上完整的答句。其实要完成一道应用题,每一个部分都不可以忽略。所以更需要学生通过前面的认真读、仔细划,努力想才能最终完整的写完。
其实,要完成一道应用题,每一个部分都是不可忽略的,而做到以上步骤的前提是掌握基础知识和各种基本用算法则,这就需要教师在平时的教学中不断训练和督导,每讲完一道题后,引导学生进行反思:对该类型题进行再分析、进一步解剖题干、挖掘其等量关系,并进一步总结;例如:“相遇问题”,题后思考总结:1、什么样的题目表述的是相遇问题?2、这类问题的等量关系是什么?3、拿到这样的题目该怎样列式计算?4、它与“追及问题”有什么异同等等?
总之,学生的思路越清析,解题方法也就越丰富灵活。因此,教学中教师不能仅仅满足于得出正确的结果,而要进行必要的研究。只有这样才能使学生能灵活运用不同的方法解决问题,做到活学活用,也只有这样才能满足于学生的求知欲,使其在数学上得到更好的发展。 如何教好小学数学应用题?

阅读全文

与什么叫做小学数学应用题相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:704
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1317
华为手机家人共享如何查看地理位置 浏览:1010
一氧化碳还原氧化铝化学方程式怎么配平 浏览:848
数学c什么意思是什么意思是什么 浏览:1369
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1350
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1022
大学物理实验干什么用的到 浏览:1448
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:829
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1606
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1452
数学中的棱的意思是什么 浏览:1017